Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542447

ABSTRACT

Sonodynamic therapy (SDT), utilizing ultrasound (US) and sonosensitizers, holds immense potential as a noninvasive and targeted treatment for a variety of deep-seated tumors. However, the clinical translation of SDT is hampered by several key limitations in sonosensitizers, especially their low aqueous stability and poor cellular uptake. In this study, non-ionic polysorbate (Tween 80, T80) was adopted to formulate effective nanocarriers for the safe and efficient delivery of sonosensitizers to cancer cells. Mitochondria-targeting triphenylphosphonium (TPP)-conjugated chlorin e6 (Ce6) sonosensitizer was loaded into T80-based micelles for efficient SDT. Pro-oxidant piperlongumine (PL) was co-encapsulated with TPP-conjugated Ce6 (T-Ce6) in T80 micelles to enable combination chemo-SDT. T80 micelles substantially enhanced the cellular internalization of T-Ce6. As a result, T80 micelles loaded with T-Ce6 and PL [T80(T-Ce6/PL)] significantly elevated intracellular reactive oxygen species (ROS) generation in MCF-7 human breast cancer cells upon US exposure. Moreover, T-Ce6 exhibited selective accumulation within the mitochondria, leading to efficient cell death under US irradiation. Importantly, T80(T-Ce6/PL) micelles caused cancer-specific cell death by selectively triggering apoptosis in cancer cells through PL. This study demonstrated the feasibility of using T80(T-Ce6/PL) micelles for efficient and cancer-specific combination chemo-SDT.


Subject(s)
Nanoparticles , Neoplasms , Organophosphorus Compounds , Porphyrins , Humans , Polysorbates , Cell Line, Tumor , Micelles , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Porphyrins/metabolism , Neoplasms/drug therapy
2.
Immunol Lett ; 184: 34-42, 2017 04.
Article in English | MEDLINE | ID: mdl-28216260

ABSTRACT

Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (VH+CH1) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli.


Subject(s)
Cysteine/genetics , Disulfides , Escherichia coli/genetics , Gene Expression , Immunoglobulin Fab Fragments/genetics , Recombinant Fusion Proteins/genetics , Sequence Deletion , Amino Acid Substitution , Cloning, Molecular , Cysteine/chemistry , Disulfides/chemistry , Escherichia coli/metabolism , Human Growth Hormone/chemistry , Human Growth Hormone/genetics , Humans , Immunoglobulin Fab Fragments/chemistry , Protein Binding , Protein Stability , Recombinant Fusion Proteins/chemistry , Solubility
3.
Immunol Lett ; 169: 33-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26593745

ABSTRACT

The serum albumin (SA) has been exploited to generate long-acting biotherapeutics by taking advantage of the FcRn-mediated recycling mechanism in a direct or an indirect way. Since Fab fragments have been proven to be clinically safe for human usage, we assumed that human anti-SA Fab antibodies could have a great potential as a carrier molecule to extend the serum half-life of therapeutic proteins. We, herein, had attempted to isolate anti-SA Fab antibodies from HuDVFab-8L antibody library via a phage display technology, and identified eight discrete human Fab antibodies. One of the Fab antibodies, SL335, showed the strongest binding reactivity to human SA with nM range of affinity at both pH 6 and pH 7.4, and cross-reacted to SAs from various species including rat, mouse, canine and monkey. The in vivo pharmacokinetic assay using a rat model indicated that SL335 has approximately 10 fold longer serum half-life and 26 to 44-fold increase in AUC0 → ∞ compared to the negative control Fab molecule in both intravenous and subcutaneous administrations. Knowing that Fabs have proven to be safe in clinics for a long time, SL335 seems to have a great potential in generating long-acting protein drugs by tagging effector molecules with either chemical conjugation or genetic fusion.


Subject(s)
Immunoglobulin Fab Fragments/pharmacology , Immunotherapy , Serum Albumin/metabolism , Animals , Cell Surface Display Techniques , Cross Reactions , Dogs , Half-Life , Haplorhini , Humans , Hydrogen-Ion Concentration , Immunoglobulin Fab Fragments/administration & dosage , Immunoglobulin Fab Fragments/isolation & purification , Mice , Protein Binding , Rats , Rats, Sprague-Dawley , Serum Albumin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...