Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 223: 105836, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360296

ABSTRACT

Foot-and-mouth disease (FMD) is an economically important disease, and the FMD virus (FMDV) can spread rapidly in susceptible animals. FMD is usually controlled through vaccination. However, commercial FMD vaccines are only effective 4-7 days after vaccination. Furthermore, FMDV comprises seven serotypes and various topotypes, and these aspects should be considered when selecting a vaccine. Antiviral agents could provide rapid and broad protection against FMDV. Therefore, this study aimed to develop a fusion protein of consensus porcine interferon-α and Fc portion of porcine antibody IgG (poIFN-α-Fc) using a baculovirus expression system to develop a novel antiviral agent against FMDV. We measured the antiviral effects of the poIFN-α-Fc protein against FMDV and the enhanced duration in vitro and in vivo. The broad-spectrum antiviral effects were tested against seven FMDV serotypes, porcine reproductive and respiratory syndrome virus (PRRSV), and bovine enterovirus (BEV). Furthermore, the early protective effects and neutralizing antibody levels were tested by co-injecting poIFN-α-Fc and an FMD-inactivated vaccine into mice or pigs. Sustained antiviral effects in pig sera and mice were observed, and pigs injected with a combination of the poIFN-α-Fc and an inactivated FMD vaccine were protected against FMDV in a dose-dependent manner at 2- and 4-days post-vaccination. In addition, combined with the inactivated FMD vaccine, poIFN-α-Fc increased the neutralizing antibody levels in mice. Therefore, poIFN-α-Fc is a potential broad-spectrum antiviral and adjuvant candidate that can be used with inactivated FMD vaccines to protect pigs against FMDV.


Subject(s)
Foot-and-Mouth Disease Virus , Vaccines , Cattle , Swine , Animals , Mice , Interferon-alpha/pharmacology , Antibodies, Neutralizing , Immunoglobulin G , Antiviral Agents/pharmacology
2.
Front Microbiol ; 14: 1121830, 2023.
Article in English | MEDLINE | ID: mdl-37250022

ABSTRACT

Foot-and-mouth disease (FMD) is an acute contagious infectious disease that affects cloven-hoofed animals. Although current emergency FMD vaccines only take effect 7 days after vaccination, antiviral agents, such as quercetin, which is a common flavonoid, could reduce the spread of FMD virus (FMDV) during outbreaks. We investigated the in vitro and in vivo antiviral effects of quercetin against FMDV. Analysis of viral copy numbers showed that quercetin had a dose-dependent inhibitory effect on FMDV at concentrations between 19.5 and 1,250 µM in porcine cells. In addition, we observed a quercetin-induced interferon (IFN)-α protein and interferon-stimulated gene (ISG) upregulation in swine cells. Enzyme-linked immunosorbent assay of sera revealed that quercetin induces the production of IFN-α, IFN-ß, IFN-γ, interleukin (IL)-12, and IL-15 in mice. Inoculation of mice with quercetin or a combination of quercetin with an inactivated FMD vaccine enhanced both the survival rate and neutralizing antibody titer. Therefore, we suggest the use of quercetin as a novel and effective antiviral agent for controlling FMDV infection; however, further investigation of its application in livestock is required.

3.
Antiviral Res ; 205: 105384, 2022 09.
Article in English | MEDLINE | ID: mdl-35863499

ABSTRACT

Foot-and-mouth disease (FMD) is an acute contagious disease of cloven-hoofed animals such as cows, pigs, sheep, and deer. The current emergency FMD vaccines, to induce early protection, have limited use, as their protective effect in pigs does not begin until 7 days after vaccination. Therefore, the use of antiviral agents would be required for reducing the spread of foot-and-mouth disease virus (FMDV) during outbreaks. Vesatolimod (GS-9620), a toll-like receptor 7 agonist, is an antiviral agent against various human disease-causing viruses. However, its antiviral effect against FMDV has not been reported yet. The aim of this study was to investigate the antiviral effects of GS-9620 against FMDV both in vitro and in vivo. The inhibitory effect of GS-9620 on FMDV in swine cells involved the induction of porcine interferon (IFN)-α and upregulation of interferon-simulated genes. Protective effect in mice injected with GS-9620 against FMDV was maintained for 5 days after injection, and cytokines such as IFN-γ, interleukin (IL)-12, IL-6, and IFN-γ inducible protein-10 could be detected following the treatment with GS-9620. Furthermore, the combination of GS-9620 with an FMD-inactivated vaccine was found to be highly effective for early protection in mice. Overall, we suggest GS-9620 as a novel and effective antiviral agent for controlling FMDV infection.


Subject(s)
Deer , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Antiviral Agents/therapeutic use , Cattle , Foot-and-Mouth Disease/drug therapy , Foot-and-Mouth Disease/prevention & control , Humans , Interferon-alpha/pharmacology , Mice , Pteridines , Sheep , Swine
4.
J Vet Med Sci ; 84(5): 726-733, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35387954

ABSTRACT

Foot-and-mouth disease virus (FMDV) causes highly contagious disease of cloven-hoofed animals such as cattle, swine, and sheep. Although FMD vaccine is the traditional way to protect against the disease, the use of FMD vaccines to protect early infection is limited. The alternative strategy of applying antiviral agents is required to control the spread of FMDV in outbreak situations. Fibroblast growth factor 11 (FGF11) is a member of the intracellular FGF. Here, we identified the inhibitory effect of FGF11 on FMDV gene expression through the transcriptional and translational regulation. For the quantitative analysis of FMDV transcription/translation level, we firstly constructed a plasmid reporter system (FMDV five prime untranslated region (5' UTR) -luci) conjugating luciferase encoding gene with FMDV 5' UTR region, which is a non-coding region to control FMDV transcription/translation and includes cis-acting replication element (CRE) and internal ribosome entry site (IRES). FGF11 decreased the gene expression of FMDV 5' UTR-luci reporter in a dose-dependent manner. We further confirmed the inhibitory function of FGF11 on FMDV gene expression a replication in the FMDV-infected pig cells. FGF11 expression inhibited RNA production of FMDV RNA polymerase 3D gene in the FMDV-infected cells. In addition, while FMDV cell infection induced cytopathic effect (CPE) within 24 hr, FGF11 expression dramatically repressed CPE at the basal level. These results indicate that FGF11 inhibits FMDV gene expression and replication in vitro, implicating to provide intervention strategy for FMDV pathogenesis and transmission.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Sheep Diseases , Swine Diseases , 5' Untranslated Regions , Animals , Cattle , Cattle Diseases/genetics , Cell Line , Fibroblast Growth Factors , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease Virus/genetics , Gene Expression , Gene Expression Regulation, Viral , Sheep/genetics , Swine , Swine Diseases/genetics , Virus Replication/physiology
5.
Virus Res ; 277: 197842, 2020 02.
Article in English | MEDLINE | ID: mdl-31874211

ABSTRACT

In previous studies, we showed two consistent findings regarding the functional relationship between hepatitis B virus (HBV) gene expression and hepatic lipid accumulation. One is that HBV X (HBx) protein expression induces hepatic lipid accumulation via specific transcriptional activation. The other is that hepatic rich lipids increase HBV gene expression. A variety of transcription factors, including nuclear receptors have been defined as regulators of HBV promoters and enhancers. However, the association between these metabolic events and HBV gene expression remains to be clearly elucidated. Here, we showed that lipid accumulation due to mitochondrial dysfunction is associated with an increase in HBV gene expression. Saturated fatty acids increase the expression of lipogenic factors cooperated with C/EBPα and LXRα. In addition, activation of PPARγ and SREBP-1 by fatty acids derived from hepatic lipid accumulation was found to increase HBV gene expression through mitochondrial dysfunction. These results provide that metabolic changes in the hepatic cells play a critical role in the HBV gene induction.


Subject(s)
Gene Expression Regulation, Viral , Hepatitis B virus/genetics , Lipogenesis/genetics , Mitochondria/pathology , Transcriptional Activation , Cell Line , Gene Expression Regulation , Hep G2 Cells , Humans , Lipid Metabolism , Liver/cytology , Liver/metabolism , Liver/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...