Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 29(Pt 4): 1114-1121, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35787579

ABSTRACT

In this study, the conceptual design and performance of a multimodal X-ray probe station recently installed at the 9C coherent X-ray scattering beamline of the Pohang Light Source-II are presented. The purpose of this apparatus is to measure coherent X-ray diffraction, X-ray fluorescence and electrical properties simultaneously. A miniature vacuum probe station equipped with a four-point probe was mounted on a six-axis motion hexapod. This can be used to study the structural and chemical evolution of thin films or nanostructures, as well as device performance including electronic transport properties. This probe station also provides the capability of varying sample environments such as gas atmosphere using a mass-flow-control system and sample temperatures up to 600°C using a pyrolytic boron nitride heater. The in situ annealing of ZnO thin films and the performance of ZnO nanostructure-based X-ray photodetectors are discussed. These results demonstrate that a multimodal X-ray probe station can be used for performing in situ and operando experiments to investigate structural phase transitions involving electrical resistivity switching.

2.
J Synchrotron Radiat ; 28(Pt 2): 505-511, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33650563

ABSTRACT

Three-dimensional structures of Ni nanoparticles undergoing significant morphological changes on oxidation were observed non-destructively using coherent X-ray diffraction imaging. The Ni particles were oxidized into Ni1O1 while forming pores of various sizes internally. For each Ni nanoparticle, one large void was identified at a lower corner near the interface with the substrate. The porosity of the internal region of the agglomerated Ni oxide was about 38.4%. Regions of high NiO density were mostly observed at the outer crust of the oxide or at the boundary with the large voids. This research expands our understanding of general catalytic reactions with direct observation of oxidation-induced nanoscale morphological changes.

3.
Nanomaterials (Basel) ; 11(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498510

ABSTRACT

Liquid drops on deformable soft substrates exhibit quite complicated wetting behavior as compared to those on rigid solid substrates. We report on a soft wetting behavior of Co nanoparticles (NPs) on a sapphire substrate during pulsed laser-induced dewetting (PLID). Co NPs produced by PLID wetted the sapphire substrate with a contact angle near 70°, which is in contrast to typical dewetting behavior of metal thin films exhibiting contact angles greater than 90°. In addition, a nanoscale γ-Al2O3 wetting ridge about 15 nm in size and a thin amorphous Al2O3 interlayer were observed around and beneath the Co NP, respectively. The observed soft wetting behavior strongly indicates that the sapphire substrate became soft and deformable during PLID. Moreover, the soft wetting was augmented under PLID in air due to the formation of a CoO shell, resulting in a smaller contact angle near 30°.

4.
Nanotechnology ; 32(8): 085708, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33181496

ABSTRACT

We present morphological and compositional analysis of phase-separated Pt-Ni alloy nanoparticles (NPs) formed by ns pulsed laser dewetting. The PtNi NPs obtained by the pulsed laser dewetting consist of phase-separated multiple domains including Pt3Ni, PtNi and PtNi3 phases with various crystal orientations as revealed by transmission electron microscopy, which is in contrast to thermal dewetting resulting NPs of a uniform composition. A three-dimensional (3D) electron density map of a dewetted PtNi NP obtained using the coherent x-ray diffraction microscopy elucidates the 3D morphology of Pt- and Ni-rich regions together with a nano-cavity formed during the pulsed laser irradiation.

5.
J Synchrotron Radiat ; 27(Pt 3): 725-729, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32381774

ABSTRACT

The laser annealing process for AuNi nanoparticles has been visualized using coherent X-ray diffraction imaging (CXDI). AuNi bimetallic alloy nanoparticles, originally phase separated due to the miscibility gap, transform to metastable mixed alloy particles with rounded surface as they are irradiated by laser pulses. A three-dimensional CXDI shows that the internal part of the AuNi particles is in the mixed phase with preferred compositions at ∼29 at% of Au and ∼90 at% of Au.

6.
J Synchrotron Radiat ; 22(3): 781-5, 2015 May.
Article in English | MEDLINE | ID: mdl-25931097

ABSTRACT

Results are reported of direct-write X-ray lithography using a hard X-ray beam focused by a Fresnel zone plate with an outermost zone width of 40 nm. An X-ray beam at 7.5 keV focused to a nano-spot was employed to write arbitrary patterns on a photoresist thin film with a resolution better than 25 nm. The resulting pattern dimension depended significantly on the kind of underlying substrate, which was attributed to the lateral spread of electrons generated during X-ray irradiation. The proximity effect originated from the diffuse scattering near the focus and electron blur was also observed, which led to an increase in pattern dimension. Since focusing hard X-rays to below a 10 nm spot is currently available, the direct-write hard X-ray lithography developed in this work has the potential to be a promising future lithographic method.

7.
ACS Appl Mater Interfaces ; 7(20): 10863-71, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25945810

ABSTRACT

Electrocatalytic materials with a porous structure have been fabricated on glass substrates, via high-temperature fabrication, for application as alternatives to platinum in dye-sensitized solar cells (DSCs). Efficient, nonporous, nanometer-thick electrocatalytic layers based on graphene oxide (GO) nanosheets were prepared on plastic substrates using electrochemical control at low temperatures of ≤100 °C. Single-layer, oxygen-rich GO nanosheets prepared on indium tin oxide (ITO) substrates were electrochemically deoxygenated in acidic medium within a narrow scan range in order to obtain marginally reduced GO at minimum expense of the oxygen groups. The resulting electrochemically reduced GO (E-RGO) had a high density of residual alcohol groups with high electrocatalytic activity toward the positively charged cobalt-complex redox mediators used in DSCs. The ultrathin, alcohol-rich E-RGO layer on ITO-coated poly(ethylene terephthalate) was successfully applied as a lightweight, low-temperature counter electrode with an extremely high optical transmittance of ∼97.7% at 550 nm. A cobalt(II/III)-mediated DSC employing the highly transparent, alcohol-rich E-RGO electrode exhibited a photovoltaic power conversion efficiency of 5.07%. This is superior to that obtained with conventionally reduced GO using hydrazine (3.94%) and even similar to that obtained with platinum (5.10%). This is the first report of a highly transparent planar electrocatalytic layer based on carbonaceous materials fabricated on ITO plastics for application in DSCs.

8.
J Synchrotron Radiat ; 22(1): 156-60, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25537602

ABSTRACT

The morphological change of silver nano-particles (AgNPs) exposed to an intense synchrotron X-ray beam was investigated for the purpose of direct nano-scale patterning of metal thin films. AgNPs irradiated by hard X-rays in oxygen ambient were oxidized and migrated out of the illuminated region. The observed X-ray induced oxidation was utilized to fabricate nano-scale metal line patterns using sectioned WSi2/Si multilayers as masks. Lines with a width as small as 21 nm were successfully fabricated on Ag films on silicon nitride. Au/Ag nano-lines were also fabricated using the proposed method.

9.
Opt Express ; 22(23): 29161-9, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25402155

ABSTRACT

We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.


Subject(s)
Diagnostic Imaging , Image Enhancement/methods , Phantoms, Imaging , X-Ray Diffraction/methods , Signal-To-Noise Ratio
10.
Opt Express ; 22(5): 5528-35, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24663893

ABSTRACT

We report quantitative determination of elemental distribution in binary compounds with nano meter scale spatial resolution using x-ray Fresnel coherent diffractive imaging (FCDI). We show that the quantitative magnitude and phase values of the x-ray wave exiting an object determined by FCDI can be utilized to obtain full-field atomic density maps of each element independently. The proposed method was demonstrated by reconstructing the density maps of Pt and NiO in a Pt-NiO binary compound with about 18 nm spatial resolution.

11.
Nanoscale ; 5(16): 7184-7, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23674261

ABSTRACT

We report a study of the oxidation process of individual PtNi nanoparticles (NPs) conducted with a novel scanning multi-layer Laue lens X-ray microscope. The elemental maps reveal that alloyed PtNi NPs were transformed into Pt/NiO core-shell NPs by thermal oxidation. The observations furthermore indicate that a coalescence of Pt/NiO core-shell NPs occurred during oxidation.

12.
Sci Rep ; 3: 1307, 2013.
Article in English | MEDLINE | ID: mdl-23419650

ABSTRACT

For scanning x-ray microscopy, many attempts have been made to image the phase contrast based on a concept of the beam being deflected by a specimen, the so-called differential phase contrast imaging (DPC). Despite the successful demonstration in a number of representative cases at moderate spatial resolutions, these methods suffer from various limitations that preclude applications of DPC for ultra-high spatial resolution imaging, where the emerging wave field from the focusing optic tends to be significantly more complicated. In this work, we propose a highly robust and generic approach based on a Fourier-shift fitting process and demonstrate quantitative phase imaging of a solid oxide fuel cell (SOFC) anode by multilayer Laue lenses (MLLs). The high sensitivity of the phase to structural and compositional variations makes our technique extremely powerful in correlating the electrode performance with its buried nanoscale interfacial structures that may be invisible to the absorption and fluorescence contrasts.


Subject(s)
Diagnostic Imaging , Microscopy , X-Ray Diffraction , Algorithms , Models, Theoretical
13.
Opt Lett ; 37(10): 1688-90, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22627538

ABSTRACT

We report a coherent diffraction imaging (CDI) using a single 8 ps soft x-ray laser pulse at a wavelength of 13.9 nm. The soft x-ray pulse was generated by a laboratory-scale intense pumping laser providing coherent x-ray pulses up to the level of 10(11) photons/pulse. A spatial resolution below 194 nm was achieved with a single pulse, and it was shown that a resolution below 55 nm is feasible with improved detector capability. The single-pulse CDI might provide a way to investigate dynamics of nanoscale molecules or particles.

14.
Opt Express ; 19(16): 15069-76, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21934868

ABSTRACT

Hard x-ray microscopy with nanometer resolution will open frontiers in the study of materials and devices, environmental sciences, and life sciences by utilizing the unique characterization capabilities of x-rays. Here we report two-dimensional nanofocusing by multilayer Laue lenses (MLLs), a type of diffractive optics that is in principle capable of focusing x-rays to 1 nm. We demonstrate focusing to a 25 × 27 nm(2) FWHM spot with an efficiency of 2% at a photon energy of 12 keV, and to a 25 × 40 nm(2) FWHM spot with an efficiency of 17% at a photon energy of 19.5 keV.


Subject(s)
Microscopy/methods , Nanotechnology/methods , Animals , Equipment Design , Humans , Lenses , Microscopy, Electron, Scanning/methods , Microscopy, Fluorescence/methods , Optics and Photonics/methods , Photons , X-Rays
15.
Opt Express ; 18(24): 24975-82, 2010 Nov 22.
Article in English | MEDLINE | ID: mdl-21164842

ABSTRACT

We demonstrated the Talbot effect using a broadband hard x-ray beam (Δλ/λ ~1). The exit wave-field of the x-ray beam passing through a grating with a sub micro-meter scale period was successfully replicated and recorded at effective Talbot distance, Z(T). The period was reduced to half at Z(T)/4 and 3/4Z(T), and the phase reversal was observed at Z(T)/2. The propagating wave-field recorded on photoresists was consistent with a simulated result.

16.
Rev Sci Instrum ; 79(5): 053104, 2008 May.
Article in English | MEDLINE | ID: mdl-18513058

ABSTRACT

A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures.

17.
Rev Sci Instrum ; 78(4): 046103, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17477694

ABSTRACT

We report a process to fabricate multilayer Laue lenses (MLL's) by sectioning and thinning multilayer films. This method can produce a linear zone plate structure with a very large ratio of zone depth to width (e.g., >1000), orders of magnitude larger than can be attained with photolithography. Consequently, MLL's are advantageous for efficient nanofocusing of hard x rays. MLL structures prepared by the technique reported here have been tested at an x-ray energy of 19.5 keV, and a diffraction-limited performance was observed. The present article reports the fabrication techniques that were used to make the MLL's.

SELECTION OF CITATIONS
SEARCH DETAIL
...