Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
PLoS One ; 19(4): e0301843, 2024.
Article in English | MEDLINE | ID: mdl-38593163

ABSTRACT

Leisure plays a key role in the happiness of youth. Studies have shown that various factors of leisure, such as the type, the time, the cost, and the space, have an influence on the adolescents' happiness. However, little is known about which of these factors is a major factor in youth's happiness. The purpose of this study is to explore the leisure factors that determine happiness in adolescents by examining the relationship between happiness and various leisure factors. The study used the method of machine learning to analyze national statistical data, National Leisure Activity Survey. The data used in this study were from the National Leisure Activity Survey 2019, which is a national statistic produced by the Ministry of Culture, Sports and Tourism in the Republic of Korea. The analysis found that leisure perceptions, academic and leisure balance, and public leisure space have a very important impact on the adolescents' well-being. The findings of this research may contribute to a better understanding of leisure and happiness in adolescents, and will also help adolescents make better use of their leisure time, leading to better leisure lives, and ultimately contribute to raising their level of happiness.


Subject(s)
Happiness , Sports , Humans , Adolescent , Leisure Activities , Republic of Korea
2.
J Pharm Biomed Anal ; 245: 116148, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38652939

ABSTRACT

Desvenlafaxine (O-desmethylvenlafaxine) and paroxetine are antidepressants that inhibit serotonin reuptake. Despite their relatively safe profiles, several serious side effects, including serotonin syndrome, bleeding, mania, and high blood pressure, are observed. We report the confirmation of the death of a 41-year-old female, with an overdose of desvenlafaxine and paroxetine suspected as the main cause of death. To quantify the level of desvenlafaxine and paroxetine in whole blood and urine, solid phase extraction combined with liquid chromatography-tandem mass spectrometry was developed and validated. Calibration curves were linear with coefficients of determination (r2) >0.999 for desvenlafaxine and paroxetine. The limits of detection and the limits of quantification for both desvenlafaxine and paroxetine were 0.001 µg/mL and 0.02 µg/mL, respectively. Desvenlafaxine and paroxetine were detected in the postmortem samples, along with various psychiatric drugs, and the blood alcohol content level was below 0.010%. The concentrations of desvenlafaxine and paroxetine in the heart blood were 11.0 µg/mL and 2.1 µg/mL, respectively, indicating lethal concentrations. In the urine, the concentrations of desvenlafaxine and paroxetine were 87.7 µg/mL and 3.5 µg/mL, respectively. This is the first report to determine the blood concentration of desvenlafaxine in a fatal intoxication caused by an overdose of desvenlafaxine single formulation.


Subject(s)
Desvenlafaxine Succinate , Drug Overdose , Paroxetine , Tandem Mass Spectrometry , Humans , Desvenlafaxine Succinate/blood , Paroxetine/blood , Female , Adult , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Solid Phase Extraction/methods , Fatal Outcome , Antidepressive Agents/poisoning , Antidepressive Agents/blood , Limit of Detection , Selective Serotonin Reuptake Inhibitors/poisoning , Selective Serotonin Reuptake Inhibitors/blood , Selective Serotonin Reuptake Inhibitors/analysis
4.
Biofabrication ; 16(2)2024 02 23.
Article in English | MEDLINE | ID: mdl-38390723

ABSTRACT

Hydrogels are widely used as scaffold materials for constructingin vitrothree-dimensional microphysiological systems. However, their high sensitivity to various external cues hinders the development of hydrogel-laden, microscale, and high-throughput chips. Here, we have developed a long-term storable gel-laden chip composite built in a multi-well plate, which enablesin situcell encapsulation and facilitates high-throughput analysis. Through optimized chemical crosslinking and freeze-drying method (C/FD), we have achieved a high-quality of gel-laden chip composite with excellent transparency, uniform porosity, and appropriate swelling and mechanical characteristics. Besides collagen, decellularized extracellular matrix with tissue-specific biochemical compound has been applied as chip composite. As a ready-to-use platform,in situcell encapsulation within the gel has been achieved through capillary force generated during gel reswelling. The liver-mimetic chip composite, comprising HepG2 cells or primary hepatocytes, has demonstrated favorable hepatic functionality and high sensitivity in drug testing. The developed fabrication process with improved stability of gels and storability allows chip composites to be stored at a wide range of temperatures for up to 28 d without any deformation, demonstrating off-the-shelf products. Consequently, this provides an exceptionally simple and long-term storable platform that can be utilized for an efficient tissue-specific modeling and various biomedical applications.


Subject(s)
Hydrogels , Liver , Humans , Hydrogels/chemistry , Collagen , Hepatocytes , Hep G2 Cells
5.
Asian J Pharm Sci ; 19(1): 100884, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38357526

ABSTRACT

Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer (TNBC), a highly aggressive disease with a poor prognosis. This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals, allowing for promising clinical outcomes with intensive treatment. However, the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance, limiting therapeutic efficacy and clinical benefit. Here, we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with time-programmed pulsatile release profiles. The implantable device can control the time between drug releases based on its internal microstructure design, which can be used to control dose density. The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar. Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo. Under the same dose density conditions, device-based chemotherapy shows a higher anti-cancer effect and less toxic response than intratumoral injection. We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose, number of releases, and treatment duration of the dose-dense AC (doxorubicin and cyclophosphamide) regimen preferred for TNBC treatment. Dose density modulation inhibits tumor growth, metastasis, and the expression of drug resistance-related proteins, including p-glycoprotein and breast cancer resistance protein. To the best of our knowledge, local dose-dense chemotherapy has not been reported, and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.

6.
Tissue Eng Part A ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38126301

ABSTRACT

Tissues on a chip are sophisticated three-dimensional (3D) in vitro microphysiological systems designed to replicate human tissue conditions within dynamic physicochemical environments. However, the current fabrication methods for tissue spheroids on a chip require multiple parts and manual processing steps, including the deposition of spheroids onto prefabricated "chips." These challenges also lead to limitations regarding scalability and reproducibility. To overcome these challenges, we employed 3D printing techniques to automate the fabrication process of tissue spheroids on a chip. This allowed the simultaneous high-throughput printing of human liver spheroids and their surrounding polymeric flow chamber "chips" containing inner channels in a single step. The fabricated liver tissue spheroids on a liver-on-a-chip (LOC) were subsequently subjected to dynamic culturing by a peristaltic pump, enabling assessment of cell viability and metabolic activities. The 3D printed liver spheroids within the printed chips demonstrated high cell viability (>80%), increased spheroid size, and consistent adenosine triphosphate (ATP) activity and albumin production for up to 14 days. Furthermore, we conducted a study on the effects of acetaminophen (APAP), a nonsteroidal anti-inflammatory drug, on the LOC. Comparative analysis revealed a substantial decline in cell viability (<40%), diminished ATP activity, and reduced spheroid size after 7 days of culture within the APAP-treated LOC group, compared to the nontreated groups. These results underscore the potential of 3D bioprinted tissue chips as an advanced in vitro model that holds promise for accurately studying in vivo biological processes, including the assessment of tissue response to administered drugs, in a high-throughput manner.

7.
Healthc Inform Res ; 29(4): 352-366, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37964457

ABSTRACT

OBJECTIVES: The benefits of physical activity (PA) for breast cancer (BC) patients and survivors are well documented. With the widespread use of the internet and mobile phones, along with the recent coronavirus disease 2019 pandemic, there has been a growing interest in digital health interventions. This study conducted a systematic review and meta-analysis to evaluate the effects of digital PA interventions for BC patients and survivors in improving PA and quality of life (QoL). METHODS: We searched eight databases, including PubMed, CINAHL, Embase, Scopus, Web of Science, Cochrane Central Register of Controlled Trials in the Cochrane Library, RISS, and DBpia. Studies were included if they provided digital PA interventions, assessed PA and QoL among BC patients and survivors, and were published from inception to December 31, 2022. RESULTS: In total, 18 studies were identified. The meta-analysis showed significant improvement in the total PA duration (five studies; standardized mean difference [SMD] = 0.71; 95% confidence interval [CI], 0.25-1.18; I2 = 86.64%), functional capacity (three studies; SMD = 0.38; 95% CI, 0.10-0.66; I2 = 14.36%), and QoL (nine studies; SMD = 0.45; 95% CI, 0.22-0.69; I2 = 65.55%). CONCLUSIONS: Digital PA interventions for BC patients and survivors may significantly improve PA, functional capacity, and QoL. Future research should focus on the long-term effects of digital PA interventions, using objective outcome measures.

8.
Article in English | MEDLINE | ID: mdl-37923557

ABSTRACT

The development of innovative vascular substitutes has become increasingly significant due to the prevalence of vascular diseases. In this study, we designed a biofunctionalized electrospun vascular scaffold by chemically conjugating heparin molecules as an antithrombotic agent with an endothelial cell (EC)-specific antibody to promote in situ endothelialization. To optimize this biofunctionalized electrospun vascular scaffolding system, we examined various parameters, including material compositions, cross-linker concentrations, and cross-linking and conjugation processes. The findings revealed that a higher degree of heparin conjugation onto the vascular scaffold resulted in improved antithrombotic properties, as confirmed by the platelet adhesion test. Additionally, the flow chamber study demonstrated that the EC-specific antibody immobilization enhanced the scaffold's EC-capturing capability compared to a nonconjugated vascular scaffold. The optimized biofunctionalized vascular scaffolds also displayed exceptional mechanical properties, such as suture retention strength and tensile properties. Our research demonstrated that the biofunctionalized vascular scaffolds and the directed immobilization of bioactive molecules could provide the necessary elements for successful acellular vascular tissue engineering applications.

9.
Front Bioeng Biotechnol ; 11: 1305023, 2023.
Article in English | MEDLINE | ID: mdl-38026892

ABSTRACT

The cell spheroid technology, which greatly enhances cell-cell interactions, has gained significant attention in the development of in vitro liver models. However, existing cell spheroid technologies still have limitations in improving hepatocyte-extracellular matrix (ECM) interaction, which have a significant impact on hepatic function. In this study, we have developed a novel bioprinting technology for decellularized ECM (dECM)-incorporated hepatocyte spheroids that could enhance both cell-cell and -ECM interactions simultaneously. To provide a biomimetic environment, a porcine liver dECM-based cell bio-ink was developed, and a spheroid printing process using this bio-ink was established. As a result, we precisely printed the dECM-incorporated hepatocyte spheroids with a diameter of approximately 160-220 µm using primary mouse hepatocyte (PMHs). The dECM materials were uniformly distributed within the bio-printed spheroids, and even after more than 2 weeks of culture, the spheroids maintained their spherical shape and high viability. The incorporation of dECM also significantly improved the hepatic function of hepatocyte spheroids. Compared to hepatocyte-only spheroids, dECM-incorporated hepatocyte spheroids showed approximately 4.3- and 2.5-fold increased levels of albumin and urea secretion, respectively, and a 2.0-fold increase in CYP enzyme activity. These characteristics were also reflected in the hepatic gene expression levels of ALB, HNF4A, CPS1, and others. Furthermore, the dECM-incorporated hepatocyte spheroids exhibited up to a 1.8-fold enhanced drug responsiveness to representative hepatotoxic drugs such as acetaminophen, celecoxib, and amiodarone. Based on these results, it can be concluded that the dECM-incorporated spheroid printing technology has great potential for the development of highly functional in vitro liver tissue models for drug toxicity assessment.

10.
J Prof Nurs ; 48: 1-14, 2023.
Article in English | MEDLINE | ID: mdl-37775223

ABSTRACT

BACKGROUND: There is limited research evidence to show that faculty-to-faculty incivility exists in nursing academia. PURPOSE: This systematic literature review aimed to synthesize the current qualitative evidence on experiences of incivility between faculty colleagues. METHODS: A meta-aggregation approach was applied according to guidelines established by the Joanna Briggs Institute. Studies published from inception to January 31, 2022 were searched from the databases including PubMed, CINAHL, Embase, Web of Science, SCOPUS, ERIC, PQDT, Ebook Central, and ProQuest Central Korea. RESULTS: Thirteen qualitative studies were included, resulting in the following six synthesized findings: (1) incivility tactics, (2) nursing academic environment that enabled incivility, (3) individual characteristics that aggravated incivility, (4) reactions to incivility, (5) coping strategies, and (6) impacts of incivility. CONCLUSIONS: Based on the synthesized findings listed above, this study offers the following four recommendations: (1) the academic culture should be improved, (2) institutional policies and procedures should be prepared, (3) faculty members should be educated on respectful communication skills, and (4) better mentoring programs should be provided to newcomers and novice faculty members. As all relevant studies were conducted in Western countries, it is important for future research to focus on issues pertaining to faculty-to-faculty incivility in Eastern culture. REGISTRATION: PROSPERO CRD42022321261.


Subject(s)
Incivility , Students, Nursing , Humans , Faculty, Nursing , Adaptation, Psychological , Organizations , Qualitative Research
11.
J Funct Biomater ; 14(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37623662

ABSTRACT

In recent studies, liver decellularized extracellular matrix (dECM)-based bioinks have gained significant attention for their excellent compatibility with hepatocytes. However, their low printability limits the fabrication of highly functional liver tissue. In this study, a new liver dECM-gelatin composite bioink (dECM gBioink) was developed to overcome this limitation. The dECM gBioink was prepared by incorporating a viscous gelatin mixture into the liver dECM material. The novel dECM gBioink showed 2.44 and 10.71 times higher bioprinting resolution and compressive modulus, respectively, than a traditional dECM bioink. In addition, the new bioink enabled stable stacking with 20 or more layers, whereas a structure printed with the traditional dECM bioink collapsed. Moreover, the proposed dECM gBioink exhibited excellent hepatocyte and endothelial cell compatibility. At last, the liver lobule mimetic structure was successfully fabricated with a precisely patterned endothelial cell cord-like pattern and primary hepatocytes using the dECM gBioink. The fabricated lobule structure exhibited excellent hepatic functionalities and dose-dependent responses to hepatotoxic drugs. These results demonstrated that the gelatin mixture can significantly improve the printability and mechanical properties of the liver dECM materials while maintaining good cytocompatibility. This novel liver dECM gBioink with enhanced 3D printability and resolution can be used as an advanced tool for engineering highly functional liver tissues.

12.
J Cardiovasc Nurs ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615610

ABSTRACT

BACKGROUND: Orthostatic hypotension (OH) is prevalent among community-dwelling older adults and is associated with multiple negative health outcomes. Older adults are susceptible to developing OH because aging alters autonomic nervous system function. Biofeedback is a noninvasive, nonpharmacological intervention that can modulate autonomic nervous system dysfunction in older adults. OBJECTIVES: Our aim in this study was to examine the effect of a biofeedback-based integrated program on community-dwelling older adults with OH. METHODS: We conducted a controlled pilot study. Community-dwelling older adults 65 years or older who had nonneurogenic OH were eligible. Data from 51 participants, comprising 27 in the intervention group and 24 in the control group, were analyzed. Weekly biofeedback-based integrated program consisting of biofeedback training along with group education about behavioral modification, physical activities, and telephone counseling was provided for 12 weeks. Orthostatic hypotension was evaluated by measuring the drop in systolic and diastolic blood pressure after postural changes. Autonomic nervous system function was measured using heart rate variability. RESULTS: Among the indicators of heart rate variability, total power (P = .037) and low frequency (P = .017) increased significantly, suggesting that autonomic function improved. Severity of orthostatic symptoms (P < .001) and drops in systolic (P = .003) and diastolic (P = .012) blood pressure after postural changes decreased significantly in the intervention group. CONCLUSION: Biofeedback-based integrated program was effective in improving autonomic nervous system function and alleviated OH. Therefore, biofeedback-based integrated program should be tested in a larger randomized controlled study with long-term follow-up.

13.
Biofabrication ; 15(3)2023 04 26.
Article in English | MEDLINE | ID: mdl-37011612

ABSTRACT

Pre-vascularization has been receiving significant attention for developing implantable engineered 3D tissues. While various pre-vascularization techniques have been developed to improve graft vascularization, the effect of pre-vascularized patterns onin vivoneo-vessel formation has not been studied. In this study, we developed a functional pre-vascularized construct that significantly promotes graft vascularization and conductedin vivoevaluations of the micro-vascular patterns (µVPs) in various printed designs.µVP formation, composed of high-density capillaries, was induced by the co-printing of endothelial cells and adipose-derived stem cells (ADSC). We implanted the printed constructs with variousµVP designs into a murine femoral arteriovenous bundle model and evaluated graft vascularization via 3D visualization and immune-histological analysis of the neo-vessels. TheµVP-distal group (µVP located away from the host vessel) showed approximately two-fold improved neo-vascularization compared to theµVP-proximal group (µVP located near the host vessel). Additionally, we confirmed that theµVP-distal group can generate the angiogenic factor gradient spatial environment for graft vascularization via computational simulations. Based on these results, the ADSC mono pattern (AMP), which secretes four times higher angiogenic factors thanµVP, was added to theµVP + AMP group design. TheµVP + AMP group showed approximately 1.5- and 1.9-fold higher total sprouted neo-vessel volume than theµVP only and AMP only groups, respectively. In immunohistochemical staining analysis, theµVP + AMP group showed two-fold improved density and diameter of the matured neo-vessels. To summarize, these findings demonstrate graft vascularization accelerated due to design optimization of our pre-vascularized constructs. We believe that the developed pre-vascularization printing technique will facilitate new possibilities for the upscaling of implantable engineered tissues/organs.


Subject(s)
Bioprinting , Mice , Animals , Endothelial Cells , Neovascularization, Physiologic , Tissue Engineering/methods , Tissue Scaffolds , Printing, Three-Dimensional
14.
Sci Rep ; 13(1): 3773, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882454

ABSTRACT

Increasing evidence suggests an association between SARS-CoV-2 vaccines and Guillain-Barré syndrome (GBS). Nevertheless, little is understood about the contributing risk factors and clinical characteristics of GBS post SARS-CoV-2 vaccination. In this prospective surveillance study of 38,828,691 SARS-CoV-2 vaccine doses administered from February 2021 to March 2022 in the Gyeonggi Province, South Korea, 55 cases of GBS were reported post vaccination. We estimated the incidence rate of GBS per million doses and the incidence rate ratio for the vaccine dose, mechanism, age, and sex. Additionally, we compared the clinical characteristics of GBS following mRNA-based and viral vector-based vaccinations. The overall incidence of GBS following SARS-CoV-2 vaccination was 1.42 per million doses. Viral vector-based vaccines were associated with a higher risk of GBS. Men were more likely to develop GBS than women. The third dose of vaccine was associated with a lower risk of developing GBS. Classic sensorimotor and pure motor subtypes were the predominant clinical subtypes, and demyelinating type was the predominant electrodiagnostic subtype. The initial dose of viral-vector based vaccine and later doses of mRNA-based vaccine were associated with GBS, respectively. GBS following SARS-CoV-2 vaccination may not be clinically distinct. However, physicians should pay close attention to the classic presentation of GBS in men receiving an initial dose of viral vector-based SARS-CoV-2 vaccines.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , Viral Vaccines , Male , Humans , Female , Incidence , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , Guillain-Barre Syndrome/epidemiology , Guillain-Barre Syndrome/etiology , Prospective Studies , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination/adverse effects , RNA, Messenger
15.
Biomed Mater ; 18(1)2022 11 24.
Article in English | MEDLINE | ID: mdl-36343367

ABSTRACT

Müller cells are the principal glial cells for the maintenance of structural stability and metabolic homeostasis in the human retina. Although variousin vitroexperiments using two-dimensional (2D) monolayer cell cultures have been performed, the results provided only limited results because of the lack of 3D structural environment and different cellular morphology. We studied a Müller cell-based 3D biomimetic model for use in experiments on thein vivo-like functions of Müller cells within the sensory retina. Isolated primary Müller cells were bioprinted and a 3D-aligned architecture was induced, which aligned Müller cell structure in retinal tissue. The stereographic and functional characteristics of the biomimetic model were investigated and compared to those of the conventional 2D cultured group. The results showed the potential to generate Müller cell-based biomimetic models with characteristic morphological features such as endfeet, soma, and microvilli. Especially, the 3D Müller cell model under hyperglycemic conditions showed similar responses as observed in thein vivodiabetic model with retinal changes, whereas the conventional 2D cultured group showed different cytokine and growth factor secretions. These results show that our study is a first step toward providing advanced tools to investigate thein vivofunction of Müller cells and to develop complete 3D models of the vertebrate retina.


Subject(s)
Bioprinting , Humans , Bioprinting/methods , Ependymoglial Cells , Biomimetics , Retina , Neuroglia/metabolism
16.
J Control Release ; 352: 685-699, 2022 12.
Article in English | MEDLINE | ID: mdl-36328077

ABSTRACT

Three-dimensional printing enables precise and on-demand manufacture of customizable drug delivery systems to advance healthcare toward the goal of personalized medicine. However, major challenges remain in realizing personalized drug delivery that fits a patient-specific drug dosing schedule using local drug delivery systems. In this study, a user-designed device is developed as implantable therapeutics that can realize personalized drug release kinetics by programming the inner structural design on the microscale. The drug release kinetics required for various treatments, including dose-dense therapy and combination therapy, can be implemented by controlling the dosage and combination of drugs along with the rate, duration, initiation time, and time interval of drug release according to the device layer design. After implantation of the capsular device in mice, the in vitro-in vivo and pharmacokinetic evaluation of the device is performed, and the therapeutic effect of the developed device is achieved through the local release of doxorubicin. The developed user-designed device provides a novel platform for developing next-generation drug delivery systems for personalized and localized therapy.


Subject(s)
Drug Delivery Systems , Printing, Three-Dimensional , Mice , Animals , Drug Liberation , Pharmaceutical Preparations , Precision Medicine
17.
Biofabrication ; 14(3)2022 04 13.
Article in English | MEDLINE | ID: mdl-35334470

ABSTRACT

In vitrocancer models that can simulate patient-specific drug responses for personalized medicine have attracted significant attention. However, the technologies used to produce such models can only recapitulate the morphological heterogeneity of human cancer tissue. Here, we developed a novel 3D technique to bioprint anin vitrobreast cancer model with patient-specific morphological features. This model can precisely mimic the cellular microstructures of heterogeneous cancer tissues and produce drug responses similar to those of human cancers. We established a bioprinting process for generating cancer cell aggregates with ductal and solid tissue microstructures that reflected the morphology of breast cancer tissues, and applied it to develop breast cancer models. The genotypic and phenotypic characteristics of the ductal and solid cancer aggregates bioprinted with human breast cancer cells (MCF7, SKBR3, MDA-MB-231) were respectively similar to those of early and advanced cancers. The bioprinted solid cancer cell aggregates showed significantly higher hypoxia (>8 times) and mesenchymal (>2-4 times) marker expressions, invasion activity (>15 times), and drug resistance than the bioprinted ductal aggregates. Co-printing the ductal and solid aggregates produced heterogeneous breast cancer tissue models that recapitulated three different stages of breast cancer tissue morphology. The bioprinted cancer tissue models representing advanced cancer were more and less resistant, respectively, to the anthracycline antibiotic doxorubicin and the hypoxia-activated prodrug tirapazamine; these were analogous to the results in human cancer. The present findings showed that cancer cell aggregates can mimic the pathological micromorphology of human breast cancer tissue and they can be bioprinted to produce breast cancer tissuein vitrothat can morphologically represent the clinical stage of cancer in individual patients.


Subject(s)
Bioprinting , Breast Neoplasms , Bioprinting/methods , Breast Neoplasms/drug therapy , Female , Humans , Hypoxia , Precision Medicine , Printing, Three-Dimensional , Tissue Engineering/methods
18.
World J Mens Health ; 40(4): 653-662, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35021313

ABSTRACT

PURPOSE: Owing to the safety and cost effectiveness of conditioned medium (CM), its therapeutic effects have attracted significant attention from many researchers. To date, numerous studies have been conducted on CM; however, little has been done with regard to erectile dysfunction (ED). In this research, the potential of human mesenchymal stem cell-derived CM (MSC-CM) for the treatment of ED was investigated. MATERIALS AND METHODS: A high concentration of MSC-CM was prepared through 3D spheroid culturing with bone marrow-derived MSCs and cut-off filtering. The composition of CM was analyzed using biochemical assays, and the effect of the preparation process on the quality of CM was investigated. The therapeutic effects of MSC-CM were evaluated through animal studies using a cavernous nerve (CN) injury rat model. RESULTS: 3D spheroid culturing afforded a 278-fold increase in the total protein content of CM, as compared to that from 2D cultures; the protein concentration increased by 19 times on increasing the centrifugation time for cut-off filtering. Biochemical assays indicated that the CM contains various types of angiogenic, neurotrophic, and anti-inflammatory factors. Histological assay results showed that MSC-CM has angio- and neuro-trophic effect in a CN injury rat model in vivo, and these therapeutic effects appear in a dose-dependent manner. CONCLUSIONS: The experimental results confirmed the therapeutic effect of MSC-CM in healing damaged cavernosal tissue and restoring erectile function. These results successfully demonstrated that MSC-CM has significant potential for the treatment of ED.

19.
Small Methods ; 5(10): e2100632, 2021 10.
Article in English | MEDLINE | ID: mdl-34927948

ABSTRACT

Although there are various pre-existing technologies for engineering vasculatures, multiscale modeling of the architecture of human vasculature at a capillary scale remains a challenge. In this study, a novel technology is developed for the production of a functional, multiscale microvasculature comprising of endothelialized channels and tissue-specific capillary networks. Perfusable, endothelialized channels are bioprinted, after which angiogenic sprouts are grown into user-designed capillary networks. The induction of branched and liver-lobule-like capillary networks confirm that the technology can produce various types of tissue-specific multiscale microvasculatures. Further, the channels and capillaries are deemed to be functional when evaluated in vitro. An ex vivo assay demonstrates that the microvasculature can induce neovessel ingrowth, integrate with host vessels, and facilitate blood flow. Remarkably, blood flows through the implanted capillary network without any change in its morphology. Finally, the technology is applied to produce a vascularized liver tissue; it significantly improves its hepatic function. It is believed that this new technology will create new possibilities in the development of highly vascularized and functional tissues/organs on a clinically relevant scale.


Subject(s)
Bioprinting/methods , Neovascularization, Physiologic , Tissue Engineering/methods , Animals , Cell Survival , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Printing, Three-Dimensional , Tissue Scaffolds
20.
Essays Biochem ; 65(3): 467-480, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34223609

ABSTRACT

Various cell aggregate culture technologies have been developed and actively applied to tissue engineering and organ-on-a-chip. However, the conventional culture technologies are labor-intensive, and their outcomes are highly user dependent. In addition, the technologies cannot be used to produce three-dimensional (3D) complex tissues. In this regard, 3D cell aggregate printing technology has attracted increased attention from many researchers owing to its 3D processability. The technology allows the fabrication of 3D freeform constructs using multiple types of cell aggregates in an automated manner. Technological advancement has resulted in the development of a printing technology with a high resolution of approximately 20 µm in 3D space. A high-speed printing technology that can print a cell aggregate in milliseconds has also been introduced. The developed aggregate printing technologies are being actively applied to produce various types of engineered tissues. Although various types of high-performance printing technologies have been developed, there are still some technical obstacles in the fabrication of engineered tissues that mimic the structure and function of native tissues. This review highlights the central importance and current technical level of 3D cell aggregate printing technology, and their applications to tissue/disease models, artificial tissues, and drug-screening platforms. The paper also discusses the remaining hurdles and future directions of the printing processes.


Subject(s)
Bioprinting , Drug Evaluation, Preclinical , Printing, Three-Dimensional , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...