Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612859

ABSTRACT

Chronic sinusitis with nasal polyps (CRSwNP) is one of the most common chronic inflammatory diseases, and involves tissue remodeling. One of the key mechanisms of tissue remodeling is the epithelial-mesenchymal transition (EMT), which also represents one of the pathophysiological processes of CRS observed in CRSwNP tissues. To date, many transcription factors and forms of extracellular stimulation have been found to regulate the EMT process. However, it is not known whether gangliosides, which are the central molecules of plasma membranes, involved in regulating signal transmission pathways, are involved in the EMT process. Therefore, we aimed to determine the role of gangliosides in the EMT process. First, we confirmed that N-cadherin, which is a known mesenchymal marker, and ganglioside GD3 were specifically expressed in CRSwNP_NP tissues. Subsequently, we investigated whether the administration of TNF-α to human nasal epithelial cells (hNECs) resulted in the upregulation of ganglioside GD3 and its synthesizing enzyme, ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialytransferase 1 (ST8Sia1), and the consequently promoted inflammatory processes. Additionally, the expression of N-cadherin, Zinc finger protein SNAI2 (SLUG), and matrix metallopeptidase 9 (MMP-9) were elevated, but that of E-cadherin, which is known to be epithelial, was reduced. Moreover, the inhibition of ganglioside GD3 expression by the siRNA or exogenous treatment of neuraminidase 3 (NEU 3) led to the suppression of inflammation and EMT. These results suggest that gangliosides may play an important role in prevention and therapy for inflammation and EMT.


Subject(s)
Inflammation , Nasal Polyps , Humans , Gangliosides , Cadherins/genetics , Epithelial Cells , Epithelial-Mesenchymal Transition
2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894829

ABSTRACT

Endometrial receptivity is a complex process that prepares the uterine endometrium for embryo implantation; insufficient endometrial receptivity is one of the causes of implantation failure. Here, we analyzed the microRNA expression profiles of exosomes derived from both receptive (RL95-2) and non-receptive (AN3-CA) endometrial epithelial cell (EEC) lines to identify exosomal miRNAs closely linked to endometrial receptivity. Among the 466 differentially expressed miRNAs, miR-205-5p was the most highly expressed in exosomes secreted from receptive RL95-2 cells. miR-205-5p, enriched at the adhesive junction, was closely related to endometrial receptivity. ZEB1, a transcriptional repressor of E-cadherin associated with endometrial receptivity, was identified as a direct target of miR-205-5p. miR-205-5p expression was significantly lower in the endometrial tissues of infertile women than in that of non-infertile women. In vivo, miR-205-5p expression was upregulated in the post-ovulatory phase, and its inhibitor reduced embryo implantation. Furthermore, administration of genetically modified exosomes overexpressing miR-205-5p mimics upregulated E-cadherin expression by targeting ZEB1 and improved spheroid attachment of non-receptive AN3-CA cells. These results suggest that the miR-205-5p/ZEB1/E-cadherin axis plays an important role in regulating endometrial receptivity. Thus, the use of exosomes harboring miR-205-5p mimics can be considered a potential therapeutic approach for improving embryo implantation.


Subject(s)
Infertility, Female , MicroRNAs , Female , Humans , Cadherins/genetics , Cadherins/metabolism , Embryo Implantation/genetics , Endometrium/metabolism , Infertility, Female/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
3.
Noncoding RNA Res ; 8(3): 273-281, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36949748

ABSTRACT

Cancer stem cells (CSCs) identified in lung cancer exhibit resistance to chemotherapy, radiotherapy, and targeted therapy. Therefore, a technology for controlling CSCs is needed to overcome such resistance to cancer therapy. Various evidences about the association between epithelial-mesenchymal transition related transcriptomic alteration and acquisition of CSC phenotype have been proposed recently. Down-regulated miR-26a-5p is closely related to mesenchymal-like lung cancer cell lines. These findings suggest that miR-26a-5p might be involved in lung cancer stemness. RNA polymerase III subunit G (POLR3G) was selected as a candidate target of miR-26a-5p related to cancer stemness. It was found that miR-26a-5p directly regulates the expression of POLR3G.Overexpression of miR-26a-5p induced a marked reduction of colony formation and sphere formation. Co-treatment of miR-26a-5p and paclitaxel decreased cell growth, suggesting that miR-26a-5p might play a role as a chemotherapy sensitizer. In the cancer genome atlas data, high miR-26a-5p and low POLR3G expression were also related to higher survival rate of patients with lung adenocarcinoma. These results suggest that miR-26a-5p can suppress lung cancer stemness and make cancer cell become sensitive to chemotherapy. This finding provides a novel insight into a potential lung cancer treatment by regulating stemness.

4.
Anim Cells Syst (Seoul) ; 26(5): 214-222, 2022.
Article in English | MEDLINE | ID: mdl-36275447

ABSTRACT

The genetic investigation of the archeological or museum samples, including endangered species, provides vital information necessary to plan, implement, and revisit conservation strategies. In South Korea, the Asian black bear went almost extinct in wild by 2002, without leaving any authentic specimens representing the native population. Recently researchers found a set of animal bones in a natural cave in Mt. Taebaek (South Korea), suspected to be of a bear. In the present study, we undertook a molecular investigation and radiocarbon dating to establish the species' identity, phylogenetic position, and approximate age of the recovered specimen. The genetic investigation (CytB, COI, D-loop, SRY, and ZFX-ZFY) identified the sample as a male Asian black bear with close phylogenetic affinity with Northeast Asian bears. Radiocarbon dating estimated the bones to be aged 1800-1942 calAD. These findings indicate that the bone specimens found in the natural cave in Mt. Taebaek were from an individual that naturally inhabited South Korea long before the importing of farm bears (the 1980s) and initiation of wild population restoration (2004). The present study provides the first genetic information record of the native South Korean black bear. Our findings reaffirm the appropriateness of the ongoing bear restoration program in South Korea, with the reintroduction of individuals from North Korea and Russia.

5.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293154

ABSTRACT

Endometrial receptivity is essential for successful pregnancy, and its impairment is a major cause of embryo-implantation failure. MicroRNAs (miRNAs) that regulate epigenetic modifications have been associated with endometrial receptivity. However, the molecular mechanisms whereby miRNAs regulate endometrial receptivity remain unclear. Therefore, we investigated whether miR-182 and its potential targets influence trophoblast cell attachment. miR-182 was expressed at lower levels in the secretory phase than in the proliferative phase of endometrium tissues from fertile donors. However, miR-182 expression was upregulated during the secretory phase in infertile women. Transfecting a synthetic miR-182-5p mimic decreased spheroid attachment of human JAr choriocarcinoma cells and E-cadherin expression (which is important for endometrial receptivity). miR-182-5p also downregulated N-Myc downstream regulated 1 (NDRG1), which was studied further. NDRG1 was upregulated in the secretory phase of the endometrium tissues and induced E-cadherin expression through the nuclear factor-κΒ (NF-κΒ)/zinc finger E-box binding homeobox 1 (ZEB1) signaling pathway. NDRG1-overexpressing or -depleted cells showed altered attachment rates of JAr spheroids. Collectively, our findings indicate that miR-182-5p-mediated NDRG1 downregulation impaired embryo implantation by upregulating the NF-κΒ/ZEB1/E-cadherin pathway. Hence, miR-182-5p is a potential biomarker for negative selection in endometrial receptivity and a therapeutic target for successful embryo implantation.


Subject(s)
Infertility, Female , MicroRNAs , Pregnancy , Female , Humans , NF-kappa B/metabolism , Infertility, Female/metabolism , Endometrium/metabolism , Cadherins/genetics , Cadherins/metabolism , Embryo Implantation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
6.
Reprod Biol ; 22(3): 100672, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35839571

ABSTRACT

SIRT1 regulates survival, DNA repair, and metabolism in human cells and has pleiotropic effects on age-related diseases through either deacetylating target proteins or inhibiting gene transcription. Forkhead box O1 (FOXO1) is one of the most important transcription factors during decidualization. Prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1) are well-known FOXO1-dependent genes in decidualizing cells. To determine whether SIRT1 plays a role in decidualization, we investigated morphological changes in cells following artificially stimulated decidualization and expression levels of PRL, IGFBP1, and FOXO1 in the immortalized non-neoplastic human endometrial stromal cell line T HESCs. SIRT1 expression decreased in the decidualization condition and SIRT1 inhibited morphological changes caused by decidualization of T HESCs. SIRT1 suppressed PRL, IGFBP1, and FOXO1 expression; inhibited FOXO1, PRL, and IGFBP1 promoter activity; and decreased histone protein acetylation of the FOXO1 promoter. We found that FOXO1 expression increased in the secretory phase compared with the proliferative phase, whereas SIRT1 expression decreased in the secretory phase in the human endometrium. We also revealed that SIRT1 may inhibit embryo implantation according to the blastocyst-like spheroid implantation assay. Collectively, these results indicate that SIRT1 suppresses decidualization of human endometrial stromal cells by inhibiting FOXO1 expression.


Subject(s)
Decidua , Sirtuin 1 , Cells, Cultured , Down-Regulation , Endometrium , Female , Forkhead Box Protein O1 , Humans , Prolactin , Stromal Cells
7.
J Nanobiotechnology ; 20(1): 125, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264192

ABSTRACT

BACKGROUND: Fabry disease (FD) is a lysosome storage disease (LSD) characterized by significantly reduced intracellular autophagy function. This contributes to the progression of intracellular pathologic signaling and can lead to organ injury. Phospholipid-polyethyleneglycol-capped Ceria-Zirconia antioxidant nanoparticles (PEG-CZNPs) have been reported to enhance autophagy flux. We analyzed whether they suppress globotriaosylceramide (Gb3) accumulation by enhancing autophagy flux and thereby attenuate kidney injury in both cellular and animal models of FD. RESULTS: Gb3 was significantly increased in cultured human renal proximal tubular epithelial cells (HK-2) and human podocytes following the siRNA silencing of α galactosidase A (α-GLA). PEG-CZNPs effectively reduced the intracellular accumulation of Gb3 in both cell models of FD and improved both intracellular inflammation and apoptosis in the HK-2 cell model of FD. Moreover these particles attenuated pro fibrotic cytokines in the human podocyte model of FD. This effect was revealed through an improvement of the intracellular autophagy flux function and a reduction in reactive oxygen species (ROS). An FD animal model was generated in which 4-week-old male B6;129-Glatm1Kul/J mice were treated for 8 weeks with 10 mg/kg of PEG-CZNPs (twice weekly via intraperitoneal injection). Gb3 levels were reduced in the kidney tissues of these animals, and their podocyte characteristics and autophagy flux functions were preserved. CONCLUSIONS: PEG-CZNPs alleviate FD associated kidney injury by enhancing autophagy function and thus provide a foundation for the development of new drugs to treat of storage disease.


Subject(s)
Fabry Disease , Nanoparticles , Animals , Autophagy , Disease Models, Animal , Fabry Disease/drug therapy , Fabry Disease/genetics , Fabry Disease/pathology , Kidney/pathology , Male , Mice , Trihexosylceramides , Zirconium
8.
Reprod Sci ; 29(11): 3212-3221, 2022 11.
Article in English | MEDLINE | ID: mdl-35075615

ABSTRACT

Decidualization of the endometrial stromal cells (ESCs) is essential for successful embryo implantation. It involves the transformation of fibroblastic cells into epithelial-like cells that secrete cytokines, growth factors, and proteins necessary for implantation. Previous studies have revealed altered expression of miR-375 in the endometrium of patients with recurrent implantation failure and the ectopic stromal cells of patients with endometriosis. However, the exact molecular mechanisms, particularly the role of microRNAs (miRNAs) in the regulation of decidualization, remain elusive. In this study, we investigated whether decidualization is affected by miR-375 and its potential target(s). The findings demonstrated the downregulation of the expression of miR-375 in the secretory phase compared to its expression in the proliferative phase of the endometrium in normal donors. In contrast, it was upregulated in the secretory phase of the endometrium in infertility patients. Furthermore, during decidualization of ESCs in vitro, overexpression of miR-375 significantly reduced the transcript-level expression of forkhead box protein O1 (FOXO1), prolactin (PRL), and insulin-like growth factor binding protein-1 (IGFBP1), the well-known decidual cell markers. Overexpression of miR-375 also resulted in reduced decidualization-derived intracellular and mitochondrial reactive oxygen species (ROS) levels. Using the luciferase assay, we confirmed that NADPH oxidase 4 (NOX4) is a direct target of miR-375. Collectively, the study showed that the miR-375-mediated NOX4 downregulation reduced ROS production and attenuated the decidualization of ESCs. It provides evidence that miR-375 is a negative regulator of decidualization and could serve as a potential target for combating infertility.


Subject(s)
Infertility , MicroRNAs , Female , Humans , Decidua/metabolism , NADPH Oxidase 4/metabolism , Reactive Oxygen Species/metabolism , Stromal Cells/metabolism , Endometrium/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Infertility/metabolism , Cells, Cultured
9.
Neurologist ; 27(2): 41-45, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34842580

ABSTRACT

BACKGROUND: The inflammatory process is involved in the pathogenesis of atherosclerosis and brain tissue injury following cerebral ischemia. Human resistin is a member of small cysteine-rich secreted proteins and has been implicated in inflammatory responses. This study investigated the association of serum resistin level with acute cerebral infarction (ACI). We also investigated its association with the short-term functional outcome. METHODS: This study included 106 patients with ACI and 106 age-matched and sex-matched healthy control subjects. Serum resistin level was assessed by using enzyme-linked immunosorbent sandwich assay. The association of serum resistin levels with ACI was analyzed by logistic regression analysis. RESULTS: The serum resistin level was significantly higher in patients with ACI than the control group [median (interquartile range), 35.7 ng/mL (13.0 to 70.5) ng/mL vs. 10.5 ng/ml (15.4 to 16.6), P<0.001]. Logistic regression analysis showed that serum resistin level was associated with an ACI (odds ratio=1.055, 95% confidence interval: 1.035-1.074, P<0.001). Among stroke subtypes, the serum resistin level was higher in the patients with large artery atherosclerosis than those with other subtypes (P=0.013). High resistin levels were also significantly associated with unfavorable functional outcome at discharge (odds ratio=1.043, 95% confidence interval: 1.024-1.063, P<0.001). CONCLUSIONS: This study suggests the potential association of resistin with stroke and cerebral atherosclerosis. Increased serum resistin levels were also associated with early unfavorable neurological outcome.


Subject(s)
Brain Ischemia , Resistin , Stroke , Acute Disease , Biomarkers , Brain Ischemia/complications , Cerebral Infarction , Humans
10.
Exp Ther Med ; 21(6): 660, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33968190

ABSTRACT

Successful embryo implantation is the first step for establishing natural pregnancy and is dependent on the crosstalk between the embryo and a receptive endometrium. However, the molecular signaling events for successful embryo implantation are not entirely understood. To identify differentially expressed transcripts [long-noncoding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs] and competing endogenous RNA (ceRNA) networks associated with endometrial receptivity, the current study analyzed gene expression profiles between proliferative and mid-secretory endometria in fertile women. A total of 247 lncRNAs, 67 miRNAs and 2,154 mRNAs were identified as differentially expressed between proliferative and mid-secretory endometria. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these differentially expressed genes were significantly enriched for 'cell adhesion molecules.' Additionally, 98 common mRNAs were significantly involved in tryptophan metabolism, metabolic pathways and FoxO signaling. From the differentially expressed lncRNA/miRNA/mRNA ceRNA network, hub RNAs that formed three axes were identified: The DLX6-AS1/miR-141 or miR-200a/OLFM1 axis, the WDFY3-AS2/miR-135a or miR-183/STC1 axis, and the LINC00240/miR-182/NDRG1 axis. These may serve important roles in the regulation of endometrial receptivity. The hub network of the current study may be developed as a candidate marker for endometrial receptivity.

11.
BMC Neurol ; 21(1): 91, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33632142

ABSTRACT

BACKGROUND: Sex hormones may be associated with a higher incidence of ischemic stroke or stroke-related events. In observational studies, lower testosterone concentrations are associated with infirmity, vascular disease, and adverse cardiovascular risk factors. Currently, female sexual hormones are considered neuroprotective agents. The purpose of this study was to assess the role of sex hormones and the ratio of estradiol/testosterone (E/T) in patients with acute ischemic stroke (AIS). METHODS: Between January 2011 and December 2016, 146 male patients with AIS and 152 age- and sex-matched control subjects were included in this study. Sex hormones, including estradiol, progesterone, and testosterone, were evaluated in the AIS patient and control groups. We analyzed the clinical and physiological levels of sex hormones and hormone ratios in these patients. RESULTS: The E/T ratio was significantly elevated among patients in the stroke group compared to those in the control group (P = 0.001). Categorization of data into tertiles revealed that patients with the highest E/T ratio were more likely to have AIS [odds ratio (OR) 3.084; 95% Confidence interval (CI): 1.616-5.886; P < 0.001) compared with those in the first tertile. The E/T ratio was also an independent unfavorable outcome predictor with an adjusted OR of 1.167 (95% CI: 1.053-1.294; P = 0.003). CONCLUSIONS: These findings support the hypothesis that increased estradiol and reduced testosterone levels are associated with AIS in men.


Subject(s)
Estradiol/blood , Ischemic Stroke/blood , Testosterone/blood , Aged , Humans , Incidence , Ischemic Stroke/epidemiology , Male , Middle Aged , Odds Ratio , Prospective Studies
12.
BMC Cancer ; 21(1): 44, 2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33422052

ABSTRACT

BACKGROUND: lncRNAs have important roles in regulating cancer biology. Accumulating evidence has established a link between the dysregulation of lncRNAs and microRNA in cancer progression. In previous studies, miR-7-5p has been found to be significantly down-regulated in mesenchymal-like lung cancer cell lines and directly regulated EGFR. In this work, we investigated the lncRNA partner of miR-7-5p in the progression of lung cancer. METHODS: We investigated the expression of miR-7-5p and the lncRNA after transfection with an miR-7-5p mimics using a microarray. The microarray results were validated using quantitative real time-polymerase Chain Reaction (qRT-PCR). The regulatory effects of lncRNA on miR-7-5p and its target were evaluated by changes in the expression of miR-7-5p after transfection with siRNAs for lncRNA and the synthesis of full-length lncRNA. The effect of miR-7-5p on lncRNA and the miRNA target was evaluated after transfection with miRNA mimic and inhibitor. The role of lncRNA in cancer progression was determined using invasion and migration assays. The level of lncRNA and EGFR in lung cancer and normal lung tissue was analyzed using TCGA data. RESULTS: We found that LINC00240 was downregulated in lung cancer cell line after miR-7-5p transfection with an miR-7-5p mimic. Further investigations revealed that the knockdown of LINC00240 induced the overexpression of miR-7-5p. The overexpression of miR-7-5p diminished cancer invasion and migration. The EGFR expression was down regulated after siRNA treatment for LINC00240. Silencing LINC00240 suppressed the invasion and migration of lung cancer cells, whereas LINC00240 overexpression exerted the opposite effect. The lower expression of LINC00240 in squamous lung cancer was analyzed using TCGA data. CONCLUSIONS: Taken together, LINC00240 acted as a sponge for miR-7-5p and induced the overexpression of EGFR. LINC00240 may represent a potential target for the treatment of lung cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Movement , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Invasiveness , Tumor Cells, Cultured
13.
Article in English | MEDLINE | ID: mdl-33503946

ABSTRACT

There are many epidemiological studies asserting that fine dust causes lung cancer, but the biological mechanism is not clear. This study was conducted to investigate the effect of PM10 (particulate matter less than 10 µm) on single nucleotide variants through whole genome sequencing in lung epithelial cancer cell lines (HCC-827, NCI-H358) that have been exposed to PM10. The two cell lines were exposed to PM10 for 15 days. We performed experimental and next generation sequencing analyses on experimental group that had been exposed to PM10 as well as an unexposed control group. After exposure to PM10, 3005 single nucleotide variants were newly identified in the NCI-H358 group, and 4402 mutations were identified in the HCC-827 group. We analyzed these single nucleotide variants with the Mutalisk program. We observed kataegis in chromosome 1 in NCI-H358 and chromosome 7 in HCC-827. In mutational signatures analysis, the COSMIC mutational signature 5 was highest in both HCC-827 and NCI-H358 groups, and each cosine similarity was 0.964 in HCC-827 and 0.979 in the NCI-H358 group. The etiology of COSMIC mutational signature 5 is unknown at present. Well-designed studies are needed to determine whether environmental factors, such as PM10, cause COSMIC mutational signature 5.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Epithelial Cells , Lung , Nucleotides , Particulate Matter/analysis , Particulate Matter/toxicity , Whole Genome Sequencing
14.
J Biomed Nanotechnol ; 16(7): 1144-1159, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33308381

ABSTRACT

Oxidative stress is one of the principal causes of hypoxia-induced kidney injury. The ceria nanoparticle (CNP) is known to exhibit free radical scavenger and catalytic activities. When zirconia is attached to CNPs (CZNPs), the ceria atom tends to remain in a Ce3+ form and its efficacy as a free radical scavenger thus increases. We determined the effectiveness of CNP and CZNP antioxidant activities against hypoxia-induced acute kidney injury (AKI) and observed that these nanoparticles suppress the apoptosis of hypoxic HK-2 cells by restoring autophagy flux and alleviating mitochondrial damage. In vivo experiments revealed that CZNPs effectively attenuate hypoxia-induced AKI by preserving renal structures and glomerulus function. These nanoparticles can successfully diffuse into HK-2 cells and effectively counteract reactive oxygen species (ROS) to block hypoxia-induced AKI. This suggests that these particles represent a novel approach to controlling this condition.


Subject(s)
Acute Kidney Injury , Nanoparticles , Antioxidants , Apoptosis , Autophagy , Humans , Hypoxia , Oxidative Stress , Reactive Oxygen Species , Zirconium
15.
Biomolecules ; 10(11)2020 11 23.
Article in English | MEDLINE | ID: mdl-33238593

ABSTRACT

Homeobox A9 (HOXA9) expression is associated with the aggressive growth of cancer cells and poor prognosis in lung cancer. Previously, we showed that HOXA9 can serve as a potential therapeutic target for the treatment of metastatic non-small cell lung cancer (NSCLC). In the present study, we have carried out additional studies toward the development of a peptide-based therapeutic agent. Vectors expressing partial DNA fragments of HOXA9 were used to identify a unique domain involved in the inhibition of NSCLC cell invasion. Next, we performed in vitro invasion assays and examined the expression of EMT-related genes in transfected NSCLC cells. The C-terminal fragment (HOXA9-C) of HOXA9 inhibited cell invasion and led to upregulation of CDH1 and downregulation of SNAI2 in A549 and NCI-H1299 cells. Reduced SNAI2 expression was consistent with the decreased binding of transcription factor NF-kB to the SNAI2 promoter region in HOXA9-C overexpressing cells. Based on the above results, we synthesized a cell-permeable peptide, CPP33-HADP (HOXA9 active domain peptide), for lung-specific delivery and tested its therapeutic efficiency. CPP33-HADP effectively reduced the invasion ability of NSCLC cells in both in vitro and in vivo mouse models. Our results suggest that CPP33-HADP has significant potential for therapeutic applications in metastatic NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cell-Penetrating Peptides/pharmacology , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Lung Neoplasms/drug therapy , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/therapeutic use , Disease Models, Animal , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , NF-kappa B/metabolism , Neoplasm Invasiveness , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Tumor Burden , Up-Regulation , Xenograft Model Antitumor Assays
16.
Yonsei Med J ; 61(7): 587-596, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32608202

ABSTRACT

PURPOSE: The current study aimed to investigate the synergistic antitumor effect of combined treatment with 17-DMAG (HSP90 inhibitor) and NVP-BEZ235 (PI3K/mTOR dual inhibitor) on cisplatin-resistant human bladder cancer cells. MATERIALS AND METHODS: Human bladder cancer cells exhibiting cisplatin resistance (T24R2) were exposed to escalating doses of 17-DMAG (2.5-20 nM) with or without NVP-BEZ236 (0.5-4 µM) in combination with cisplatin. Antitumor effects were assessed by CCK-8 analysis. Based on the dose-response study, synergistic interactions between the two regimens were evaluated using clonogenic assay and combination index values. Flow cytometry and Western blot were conducted to analyze mechanisms of synergism. RESULTS: Dose- and time-dependent antitumor effects for 17-DMAG were observed in both cisplatin-sensitive (T24) and cisplatin-resistant cells (T24R2). The antitumor effect of NVP-BEZ235, however, was found to be self-limiting. The combination of 17-DMAG and NVP-BEZ235 in a 1:200 fixed ratio showed a significant antitumor effect in cisplatin-resistant bladder cancer cells over a wide dose range, and clonogenic assay showed compatible results with synergy tests. Three-dimensional analysis revealed strong synergy between the two drugs with a synergy volume of 201.84 µM/mL²%. The combination therapy resulted in G1-phase cell cycle arrest and caspase-dependent apoptosis confirmed by the Western blot. CONCLUSION: HSP90 inhibitor monotherapy and in combination with the PI3K/mTOR survival pathway inhibitor NVP-BEZ235 shows a synergistic antitumor effect in cisplatin-resistant bladder cancers, eliciting cell cycle arrest at the G1 phase and induction of caspase-dependent apoptotic pathway.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzoquinones/therapeutic use , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Lactams, Macrocyclic/therapeutic use , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Urinary Bladder Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/drug effects , Benzoquinones/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , DNA Damage/drug effects , Humans , Imidazoles , Lactams, Macrocyclic/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Quinolines , TOR Serine-Threonine Kinases/metabolism
17.
Microorganisms ; 8(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610432

ABSTRACT

Lactobacillus iners is the most prevalent bacterial species in the human vaginal microbiome, and there have been few reports of its Gram-negative stain appearances despite the fact that the genus Lactobacillus is universally described as Gram-positive. Here, using transmission electron microscopy, we reveal that the thinness of the cell wall (17.39 ± 0.8 nm) gives the Gram-negative stain appearance, which can lead to over-diagnosis of bacterial vaginosis. Moreover, comparative genome analysis identified four genes commonly absent in L. iners genomes that might contribute to this phenotypic difference. We suggest that, along with the several niche-specific attributes identified, this unique feature may contribute to the species' distinguished capability to thrive as the predominant species in the fluctuating vaginal environment as well.

18.
Front Microbiol ; 11: 1048, 2020.
Article in English | MEDLINE | ID: mdl-32528446

ABSTRACT

Despite the importance of Lactobacillus iners and its unique characteristics for the study of vaginal adaption, its genome and genomic researches for identifying molecular backgrounds of these specific phenotypes are still limited. In this study, the first complete genome of L. iners was constructed using a cost-effective long-read sequencing platform, Flongle from Oxford Nanopore, and comparative genome analysis was conducted using a total of 1,046 strain genomes from 10 vaginal Lactobacillus species. Single-molecule sequencing using Flongle effectively resolved the limitation of the 2nd generation sequencing technologies in dealing with genomic regions of high GC contents, and comparative genome analysis identified three potential core genes (INY, ZnuA, and hsdR) of L. iners which was related to its specific adaption to the vaginal environment. In addition, we performed comparative prophage analysis for 1,046 strain genomes to further identify the species specificity. The number of prophages in L. iners genomes was significantly smaller than other vaginal Lactobacillus species, and one of the specific genes (hsdR) was suggested as the means for defense against bacteriophage. The first complete genome of L. iners and the three specific genes identified in this study will provide useful resources to further expand our knowledge of L. iners and its specific adaption to the vaginal econiche.

19.
PeerJ ; 8: e9084, 2020.
Article in English | MEDLINE | ID: mdl-32509448

ABSTRACT

BACKGROUND: Benzalkonium chloride (BAK), commonly used in glaucoma treatment, is an eye drop preservative with dose-dependent toxicity. Previous studies have observed the multi-functional benefits of angiogenin (ANG) against glaucoma. In our study, we evaluated ANG's cytoprotective effect on the trabecular meshwork (TM) damage induced by BAK. Additionally, we developed a plant-derived ANG fusion protein and evaluated its effect on TM structure and function. METHODS: We synthesized plant-derived ANG (ANG-FcK) by fuzing immunoglobulin G's Fc region and KDEL to conventional recombinant human ANG (Rh-ANG) purified from transgenic tobacco plants. We established a mouse model using BAK to look for degenerative changes in the TM, and to evaluate the protective effects of ANG-FcK and Rh-ANG. Intraocular pressure (IOP) was measured for 4 weeks and ultrastructural changes, deposition of fluorescent microbeads, type I and IV collagen, fibronectin, laminin and α-SMA expression were analyzed after the mice were euthanized. RESULTS: TM structural and functional degeneration were induced by 0.1% BAK instillation in mice. ANG co-treatment preserved TM outflow function, which we measured using IOP and a microbead tracer. ANG prevented phenotypic and ultrastructure changes, and that protective effect might be related to the anti-fibrosis mechanism. We observed a similar cytoprotective effect in the BAK-induced degenerative TM mouse model, suggesting that plant-derived ANG-FcK could be a promising glaucoma treatment.

20.
BMC Complement Med Ther ; 20(1): 36, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32024510

ABSTRACT

BACKGROUND: Embryo implantation is essential for a successful pregnancy, and an elaborate synchronization between the receptive endometrium and trophoblast is required to achieve this implantation. To increase 'endometrial receptivity', the endometrium undergoes transformation processes including responses of adhesion molecules and cellular and molecular cell to cell communication. Many natural substances from traditional herbs have been studied to aid in the achievement of successful implantation. In this study, we investigated positive effects on embryonic implantation with decursinol that is a major compound extracted from Angelica gigas Nakai known to be associated with promotion of healthy pregnancy in the traditional Korean herbal medicine. METHODS: Expression of cell adhesion molecules after treatment of endometrial epithelial cells by decursinol (40 or 80 µM) was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot analysis. The alteration of endometrial receptivity by decursinol (40 or 80 µM) was identified with the in vitro implantation model between Ishikawa cells and JAr cell spheroids (diameter, 143 ± 16 µm). Exosomes secreted from Ishikawa cells after treatment of 80 µM decursinol or dimethyl sulfoxide (DMSO) as the vehicle were investigated with invasion of JAr cells and attachment of JAr spheroids to Ishikawa cells. RESULTS: Decursinol significantly (P < 0.05) increased the expression of important endometrial adhesion molecules such as integrin ß1, ß3, ß5 and L-selectin mRNAs and integrin ß5 and L-selectin in protein. The adhesion rate of JAr spheroids to decursinol-treated Ishikawa cells also increased significantly which was 2.4-fold higher than that of the control (P < 0.05). Furthermore, decursinol induced an increase in the release of exosomes from Ishikawa cells and decursinol-induced exosomes showed autocrine (to Ishikawa cells) and paracrine (to JAr cells) positive effects on our implantation model. CONCLUSION: These results propose that decursinol could serve as a new and alternative solution for patients who are infertile.


Subject(s)
Angelica/chemistry , Benzopyrans/pharmacology , Butyrates/pharmacology , Cell Adhesion Molecules/metabolism , Embryo Implantation/drug effects , Endometrium/drug effects , Blotting, Western , Cell Line, Tumor , Female , Humans , Molecular Structure , Spheroids, Cellular/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...