Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Ultrasonography ; 42(2): 249-258, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36935599

ABSTRACT

PURPOSE: High-contrast tissue characterization of thermal ablation has been desired to evaluate therapeutic outcomes accurately. This paper presents a photoacoustic (PA) characterization of thermal tissue ablation in the visible spectrum, in which higher light absorbance can produce spectral contrast starker than in the near-infrared range. METHODS: Ex vivo experiments were performed to measure visible PA spectra (480-700 nm) from fresh porcine liver tissues that received a thermal dose in a range of cumulative equivalent minutes at 43°C (CEM43). The local hemoglobin lobe area between 510-600 nm and wholespectral area under the curve were evaluated to represent the transition of hemoglobin into methemoglobin (MetHb) in the target tissue. RESULTS: The thermal process below an estimated therapeutic CEM43 threshold (80-340 minutes) presented a progressive elevation of the PA spectrum and an eventual loss of local hemoglobin peaks in the visible spectrum, closer to the MetHb spectrum. Interestingly, an excessive CEM43 produced a substantial drop in the PA spectrum. In the spectral analysis, the visible spectrum yielded 13.9-34.1 times higher PA sensitivity and 1.42 times higher contrast change than at a near-infrared wavelength. CONCLUSION: This novel method of PA tissue characterization in the visible spectrum could be a potential modality to evaluate various thermal therapeutic modalities at high-contrast resolution.

2.
Ultrasonics ; 129: 106908, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36527822

ABSTRACT

In this paper, we present a volumetric transrectal ultrasound (TRUS) imaging under the presence of radial scanning angle disorientation (SAD) in a resource-limited diagnostic setting. Herein, we test our hypothesis that a synthetic radial aperture focusing (TRUS-rSAF) technique, in which a radial plane in target volume is reconstructed by coherent compounding of multiple transmittance/reception events, will reject a randomized SAD in a free-hand scanning setup based on external angular tracking. Based on an analytical model of the TRUS-rSAF technique, we first tested specific scenarios using a clinically available TRUS transducer under different SADs in a range of normal distributions (σ = 0.1°, 0.2°, 0.5°, 1°, 2°, and 5°). We found a benefit of the TRUS-rSAF technique for higher robustness when the SAD is contained within the radial synthetic aperture window, i.e., ±0.71° from a target scanning angle. However, no enhancement was found in spatial resolution because of the limited transmit beam field of the clinical TRUS transducer, limiting the synthetic aperture window. We further evaluated the TRUS-rSAF technique with a modified TRUS transducer for an extended synthetic aperture window to test whether higher spatial resolution and robustness to SAD can be obtained in the same evaluation setup. Widening of the synthetic aperture window (±3.54°, ± 5.91°, ± 8.27°, ± 10.63°, ± 12.99°, ± 15.35°) resulted in proportional enhancements of spatial resolution, but it also progressively built up sidelobe artifacts due to randomized synthesis with limited phase cancellations. The results suggest the need for careful calibration of the TRUS-rSAF technique to enable TRUS imaging with free-hand radial scanning and external angle tracking in resource-limited settings.


Subject(s)
Artifacts , Transducers , Phantoms, Imaging , Ultrasonography/methods
3.
J Comput Des Eng ; 9(5): 1852-1865, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36268473

ABSTRACT

In this paper, we present a novel design framework of synthetic radial aperture focusing for three-dimensional (3D) transrectal ultrasound imaging (TRUS-rSAF), in which multiple transmittance/reception events at different scanning angles are synthesized to reconstruct a radial plane in the target volume, securing high spatial resolution and texture uniformity. A theory-based design approach has not been available to push the envelope of the 3D rSAF technique. Herein, a closed-form analytical description of the TRUS-rSAF method is presented for the first time, effectively delineating spatial resolution and grating lobe positions in the radial dimension of a TRUS transducer. We demonstrate a solid optimization workflow based on the theoretical foundation to improve its spatiotemporal resolution, grating lobe artifacts, and signal-to-noise ratio. A specific design criterion was considered to outperform a clinical 3D TRUS imaging as a reference (TRUS-REF), where each radial plane is reconstructed with a single transmittance/reception event using a motorized actuator. The optimized TRUS-rSAF method significantly enhanced spatial resolution up to 50% over the TRUS-REF method while providing clinically effective temporal resolution (2-8 volume/sec) with negligible grating lobe artifacts. The results indicate that the proposed design approach would enable a novel TRUS imaging solution in clinics.

4.
Photoacoustics ; 27: 100378, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36068804

ABSTRACT

This study presents a system-level optimization of spectroscopic photoacoustic (PA) imaging for prostate cancer (PCa) detection in three folds. First, we present a spectral unmixing model to segregate spectral system error (SSE). We constructed two noise models (NMs) for the laser spectrotemporal fluctuation and the ultrasound system noise. We used these NMs in linear spectral unmixing to denoise and to achieve high temporal resolution. Second, we employed a simulation-aided wavelength optimization to select the most effective subset of wavelengths. NMs again were considered so that selected wavelengths were not only robust to the collinearity of optical absorbance, but also to noise. Third, we quantified the effect of frame averaging on improving spectral unmixing accuracy through theoretical analysis and numerical validation. To validate the whole framework, we performed comprehensive studies in simulation and an in vivo experiment which evaluated prostate-specific membrane antigen (PSMA) expression in PCa on a mice model. Both simulation analysis and in vivo studies confirmed that the proposed framework significantly enhances image signal-to-noise ratio (SNR) and spectral unmixing accuracy. It enabled more sensitive and faster PCa detection. Moreover, the proposed framework can be generalized to other spectroscopic PA imaging studies for noise reduction, wavelength optimization, and higher temporal resolution.

6.
IEEE Trans Biomed Eng ; 69(9): 2817-2825, 2022 09.
Article in English | MEDLINE | ID: mdl-35226597

ABSTRACT

OBJECTIVE: Two-dimensional (2D) photoacoustic (PA) imaging based on array transducers provide high spatial resolution in the lateral direction by adopting receive dynamic focusing. However, the quality of PA image is often deteriorated by poor elevational resolution which is achieved by an acoustic lens. To overcome this limitation, we present a three-dimensional (3D) image reconstruction method using a commercial one-dimensional (1D) array transducer. METHODS: In the method, the elevational resolution is improved by applying synthetic aperture focusing (SAF) technique along the elevational direction. For this, a commercially available 1D array transducer with an acoustic lens is modeled and appropriate synthetic focusing delay that can minimize the effect of the acoustic lens is derived by mathematical analysis. RESULTS: From the simulation and experiment results, it was demonstrated that the proposed method can enhance the image quality of PA imaging, i.e., elevational resolution and signal-to-noise ratio (SNR). CONCLUSION: 3D PA images with improved elevational resolution were achieved using a clinical 1D array transducer. SIGNIFICANCE: The presented method may be useful for clinical application such as detecting microcalcification, imaging of tumor vasculature and guidance of biopsy in real time.


Subject(s)
Photoacoustic Techniques , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Phantoms, Imaging , Photoacoustic Techniques/methods , Signal-To-Noise Ratio , Transducers
7.
Exp Neurol ; 347: 113898, 2022 01.
Article in English | MEDLINE | ID: mdl-34662542

ABSTRACT

A noninvasive monitor for concurrent evaluation of placental and fetal sagittal sinus sO 2 for both antepartum surveillance at the late 2nd and 3rd trimesters and intrapartum monitoring would be a great advantage over current methods. A PA fetal brain and placental monitor has potential value to rapidly identify the fetus at risk for developing hypoxia and ischemia of a sufficient degree that brain injury or death may develop, which may be prevented by intervention with delivery and other follow-up treatments.


Subject(s)
Brain/diagnostic imaging , Fetal Monitoring/methods , Fetus/diagnostic imaging , Photoacoustic Techniques/methods , Placenta/diagnostic imaging , Brain/blood supply , Brain/physiology , Cerebrovascular Circulation/physiology , Female , Fetal Hypoxia/diagnostic imaging , Fetal Hypoxia/physiopathology , Fetus/physiology , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/physiopathology , Placenta/blood supply , Placenta/physiology , Pregnancy
8.
J Neural Eng ; 18(6)2022 01 05.
Article in English | MEDLINE | ID: mdl-34937013

ABSTRACT

OBJECTIVE: Perinatal ischemic stroke is estimated to occur in 1/2300-1/5000 live births, but early differential diagnosis from global hypoxia-ischemia is often difficult. In this study, we tested the ability of a hand-held transcranial photoacoustic (PA) imaging probe to non-invasively detect a focal photothrombotic stroke (PTS) within 2 h of stroke onset in a gyrencephalic piglet brain. APPROACH: About 17 stroke lesions of approximately 1 cm2area were introduced randomly in anterior or posterior cortex via the light/dye PTS technique in anesthetized neonatal piglets (n= 11). The contralateral non-ischemic region served as control tissue for discrimination contrast for the PA hemoglobin metrics: oxygen saturation, total hemoglobin (tHb), and individual quantities of oxygenated and deoxygenated hemoglobin (HbO2and HbR). MAIN RESULTS: The PA-derived tissue oxygen saturation at 2 h yielded a significant separation between control and affected regions-of-interest (p< 0.0001), which were well matched with 24 h post-stroke cerebral infarction confirmed in the triphenyltetrazolium chloride-stained image. The quantity of HbO2also displayed a significant contrast (p= 0.021), whereas tHb and HbR did not. The analysis on receiver operating characteristic curves and multivariate data analysis also agreed with the results above. SIGNIFICANCE: This study shows that a hand-held transcranial PA neuroimaging device can detect a regional thrombotic stroke in the cerebral cortex of a neonatal piglet. In particular, we conclude that the oxygen saturation metric can be used alone to identify regional stroke lesions. The lack of change in tHb may be related to arbitrary hand-held imaging configuration and/or entrapment of red blood cells within the thrombotic stroke.


Subject(s)
Brain Ischemia , Stroke , Animals , Brain , Brain Ischemia/pathology , Cerebral Cortex , Neuroimaging , Stroke/diagnostic imaging , Swine
9.
Front Neurosci ; 15: 742405, 2021.
Article in English | MEDLINE | ID: mdl-34776848

ABSTRACT

Many currently employed clinical brain functional imaging technologies rely on indirect measures of activity such as hemodynamics resulting in low temporal and spatial resolutions. To improve upon this, optical systems were developed in conjunction with methods to deliver near-IR voltage-sensitive dye (VSD) to provide activity-dependent optical contrast to establish a clinical tool to facilitate direct monitoring of neuron depolarization through the intact skull. Following the previously developed VSD delivery protocol through the blood-brain barrier, IR-780 perchlorate VSD concentrations in the brain were varied and stimulus-evoked responses were observed. In this paper, a range of optimal VSD tissue concentrations was established that maximized fluorescence fractional change for detection of membrane potential responses to external stimuli through a series of phantom, in vitro, ex vivo, and in vivo experiments in mouse models.

10.
Nanoscale ; 13(20): 9217-9228, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33978042

ABSTRACT

Prostate-specific membrane antigen (PSMA) is a promising diagnostic and therapeutic target for prostate cancer (PC). Poly(amidoamine) [PAMAM] dendrimers serve as versatile scaffolds for imaging agents and drug delivery that can be tailored to different sizes and compositions depending upon the application. We have developed PSMA-targeted PAMAM dendrimers for real-time detection of PC using fluorescence (FL) and photoacoustic (PA) imaging. A generation-4, ethylenediamine core, amine-terminated dendrimer was consecutively conjugated with on average 10 lysine-glutamate-urea PSMA targeting moieties and a different number of sulfo-cyanine7.5 (Cy7.5) near-infrared dyes (2, 4, 6 and 8 denoted as conjugates II, III, IV and V, respectively). The remaining terminal primary amines were capped with butane-1,2-diol functionalities. We also prepared a conjugate composed of Cy7.5-lysine-suberic acid-lysine glutamate-urea (I) and control dendrimer conjugate (VI). Among all conjugates, IV showed superior in vivo target specificity in male NOD-SCID mice bearing isogenic PSMA+ PC3 PIP and PSMA- PC3 flu xenografts and suitable physicochemical properties for FL and PA imaging. Such agents may prove useful in PC cancer detection and subsequent surgical guidance during excision of PSMA-expressing lesions.


Subject(s)
Contrast Media , Prostatic Neoplasms , Animals , Antigens, Surface , Cell Line, Tumor , Disease Models, Animal , Glutamate Carboxypeptidase II , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms/diagnostic imaging
11.
Small ; 17(3): e2007244, 2021 01.
Article in English | MEDLINE | ID: mdl-33354911

ABSTRACT

Coherent manipulation of light-matter interactions is pivotal to the advancement of nanophotonics. Conventionally, the non-resonant optical Stark effect is harnessed for band engineering by intense laser pumping. However, this method is hindered by the transient Stark shifts and the high-energy laser pumping which, by itself, is precluded as a nanoscale optical source due to light diffraction. As an analog of photons in a laser, surface plasmons are uniquely positioned to coherently interact with matter through near-field coupling, thereby, providing a potential source of electric fields. Herein, the first demonstration of plasmonic Stark effect is reported and attributed to a newly uncovered energy-bending mechanism. As a complementary approach to the optical Stark effect, it is envisioned that the plasmonic Stark effect will advance fundamental understanding of coherent light-matter interactions and will also provide new opportunities for advanced optoelectronic tools, such as ultrafast all-optical switches and biological nanoprobes at lower light power levels.


Subject(s)
Lasers , Photons , Engineering
12.
Sci Rep ; 10(1): 6618, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313132

ABSTRACT

Despite current progress achieved in the surgical technique of radical prostatectomy, post-operative complications such as erectile dysfunction and urinary incontinence persist at high incidence rates. In this paper, we present a methodology for functional intra-operative localization of the cavernous nerve (CN) network for nerve-sparing radical prostatectomy using near-infrared cyanine voltage-sensitive dye (VSD) imaging, which visualizes membrane potential variations in the CN and its branches (CNB) in real time. As a proof-of-concept experiment, we demonstrate a functioning complex nerve network in response to electrical stimulation of the CN, which was clearly differentiated from surrounding tissues in an in vivo rat prostate model. Stimulation of an erection was confirmed by correlative intracavernosal pressure (ICP) monitoring. Within 10 minutes, we performed trans-fascial staining of the CN by direct VSD administration. Our findings suggest the applicability of VSD imaging for real-time, functional imaging guidance during nerve-sparing radical prostatectomy.


Subject(s)
Carbocyanines/chemistry , Coloring Agents/chemistry , Computer Systems , Infrared Rays , Nerve Net/diagnostic imaging , Penis/innervation , Penis/surgery , Voltage-Sensitive Dye Imaging , Animals , Artifacts , Frozen Sections , Humans , Male , Motion , Penis/diagnostic imaging , Rats, Sprague-Dawley , Reproducibility of Results
13.
Ultrasonics ; 103: 106098, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32105781

ABSTRACT

We present a proof-of-concept of an automatic integration of photoacoustic (PA) imaging on clinical ultrasound (US) imaging platforms. Here we tackle two critical challenges: the laser synchronization and the inaccessibility to the beamformer core embedded in commercial US imaging platform. In particular, the line trigger frequency (LTF) estimation and the asynchronous synthetic aperture inverse beamforming (ASAIB) were developed and evaluated in both k-Wave simulation and phantom experiment. The proposed method is an economical solution to enable PA imaging on a greater number of US equipment to further thrive the PA imaging research community.


Subject(s)
Lasers , Photoacoustic Techniques/economics , Photoacoustic Techniques/instrumentation , Algorithms , Computer Simulation , Equipment Design , Image Processing, Computer-Assisted , Proof of Concept Study
14.
J Neural Eng ; 17(2): 025001, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32084654

ABSTRACT

OBJECTIVE: We report the transcranial functional photoacoustic (fPA) neuroimaging of N-methyl-D-aspartate (NMDA) evoked neural activity in the rat hippocampus. Concurrent quantitative electroencephalography (qEEG) and microdialysis were used to record real-time circuit dynamics and excitatory neurotransmitter concentrations, respectively. APPROACH: We hypothesized that location-specific fPA voltage-sensitive dye (VSD) contrast would identify neural activity changes in the hippocampus which correlate with NMDA-evoked excitatory neurotransmission. MAIN RESULTS: Transcranial fPA VSD imaging at the contralateral side of the microdialysis probe provided NMDA-evoked VSD responses with positive correlation to extracellular glutamate concentration changes. qEEG validated a wide range of glutamatergic excitation, which culminated in focal seizure activity after a high NMDA dose. We conclude that transcranial fPA VSD imaging can distinguish focal glutamate loads in the rat hippocampus, based on the VSD redistribution mechanism which is sensitive to the electrophysiologic membrane potential. SIGNIFICANCE: Our results suggest the future utility of this emerging technology in both laboratory and clinical sciences as an innovative functional neuroimaging modality.


Subject(s)
N-Methylaspartate , Photoacoustic Techniques , Animals , Glutamic Acid , Hippocampus/diagnostic imaging , Neuroimaging , Rats , Receptors, N-Methyl-D-Aspartate
15.
IEEE Int Ultrason Symp ; 20202020 Sep.
Article in English | MEDLINE | ID: mdl-34306522

ABSTRACT

The multi-bounce laser microphone utilizes optical methods to detect the displacement of a gold-covered thin film diaphragm caused by ultrasound signal pressure waves. This sensitive all-optical sensing technique provides new opportunities for advanced ultrasound imaging as it is expected to achieve a higher detection signal-to-noise ratio (SNR) in a broader spectrum, as compared to conventional ultrasonic transducers. The technique does not involve signal time-averaging and the real-time enhancement in detection SNR stems from the amplification of signal strength due to multiple bouncing off the diaphragm. The system was previously developed for detecting acoustic signatures generated by explosives and were limited to lower than 10 kHz in frequency. To demonstrate its feasibility for biomedical imaging applications, preliminary experiments were conducted to show high fidelity detection of ultrasound waves with frequencies ranging from 100 kHz to in excess of 1 MHz. Experimental results are also presented in this work demonstrating the improved detection sensitivity of the multi-bounce laser microphone in detecting ultrasound signals when compared with a commercial Fabry-Perot type optical hydrophone. Furthermore, we also applied the multi-bounce laser microphone to detect photoacoustic signatures emitted by India ink when a LED bar is used as the excitation source without signal averaging.

16.
Front Neurosci ; 13: 579, 2019.
Article in English | MEDLINE | ID: mdl-31447622

ABSTRACT

Minimally-invasive monitoring of electrophysiological neural activities in real-time-that enables quantification of neural functions without a need for invasive craniotomy and the longer time constants of fMRI and PET-presents a very challenging yet significant task for neuroimaging. In this paper, we present in vivo functional PA (fPA) imaging of chemoconvulsant rat seizure model with intact scalp using a fluorescence quenching-based cyanine voltage-sensitive dye (VSD) characterized by a lipid vesicle model mimicking different levels of membrane potential variation. The framework also involves use of a near-infrared VSD delivered through the blood-brain barrier (BBB), opened by pharmacological modulation of adenosine receptor signaling. Our normalized time-frequency analysis presented in vivo VSD response in the seizure group significantly distinguishable from those of the control groups at sub-mm spatial resolution. Electroencephalogram (EEG) recording confirmed the changes of severity and frequency of brain activities, induced by chemoconvulsant seizures of the rat brain. The findings demonstrate that the near-infrared fPA VSD imaging is a promising tool for in vivo recording of brain activities through intact scalp, which would pave a way to its future translation in real time human brain imaging.

17.
Biomed Opt Express ; 9(8): 3915-3922, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30338164

ABSTRACT

Optical imaging of brain activity has mostly employed genetically manipulated mice, which cannot be translated to clinical human usage. Observation of brain activity directly is challenging due to the difficulty in delivering dyes and other agents through the blood brain barrier (BBB). Using fluorescence imaging, we have demonstrated the feasibility of delivering the near-infrared voltage-sensitive dye (VSD) IR-780 perchlorate to the brain tissue through pharmacological techniques, via an adenosine agonist (regadenoson). Comparison of VSD fluorescence of mouse brains without and with regadenoson showed significantly increased residence time of the fluorescence signal in the latter case, indicative of VSD diffusion into the brain tissue. Dose and timing of regadenoson were varied to optimize BBB permeability for VSD delivery.

18.
J Appl Physiol (1985) ; 125(4): 983-989, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29927734

ABSTRACT

We hypothesize that noninvasive photoacoustic imaging can accurately measure cerebral venous oxyhemoglobin saturation (So2) in a neonatal model of hypoxia-ischemia. In neonatal piglets, which have a skull thickness comparable to that of human neonates, we compared the photoacoustic measurement of sagittal sinus So2 against that measured directly by blood sampling over a wide range of conditions. Systemic hypoxia was produced by decreasing inspired oxygen stepwise (i.e., 100, 21, 19, 17, 15, 14, 13, 12, 11, and 10%) with and without unilateral or bilateral ligation of the common carotid arteries to enhance hypoxia-ischemia. Transcranial photoacoustic sensing enabled us to detect changes in sagittal sinus O2 saturation throughout the tested range of 5-80% without physiologically relevant bias. Despite lower cortical perfusion and higher oxygen extraction in groups with carotid occlusion at equivalent inspired oxygen, photoacoustic measurements successfully provided a robust linear correlation that approached the line of identity with direct blood sample measurements. Receiver-operating characteristic analysis for discriminating So2 <30% showed an area under the curve of 0.84 for the pooled group data, and 0.87, 0.91, and 0.92 for hypoxia alone, hypoxia plus unilateral occlusion, and hypoxia plus bilateral occlusion subgroups, respectively. The detection precision in this critical range was confirmed with sensitivity (87.0%), specificity (86.5%), accuracy (86.8%), positive predictive value (90.5%), and negative predictive value (81.8%) in the combined dataset. These results validate the capability of photoacoustic sensing technology to accurately monitor sagittal sinus So2 noninvasively over a wide range and support its use for early detection of neonatal hypoxia-ischemia. NEW & NOTEWORTHY We present data to validate the noninvasive photoacoustic measurement of sagittal sinus oxyhemoglobin saturation. In particular, this paper demonstrates the robustness of this methodology during a wide range of hemodynamic and physiological changes induced by the stepwise decrease of fractional inspired oxygen to produce hypoxia and by unilateral and bilateral ligation of the common carotid arteries preceding hypoxia to produce hypoxia-ischemia. This technique may be useful for diagnosing risk of neonatal hypoxic-ischemic encephalopathy.


Subject(s)
Hypoxia/blood , Oxyhemoglobins/analysis , Photoacoustic Techniques , Animals , Animals, Newborn , Superior Sagittal Sinus , Swine
19.
J Biophotonics ; 11(9): e201800021, 2018 09.
Article in English | MEDLINE | ID: mdl-29653029

ABSTRACT

A sensitive, noninvasive method to detect localized prostate cancer, particularly for early detection and repetitive study in patients undergoing active surveillance, remains an unmet need. Here, we propose a molecular photoacoustic (PA) imaging approach by targeting the prostate-specific membrane antigen (PSMA), which is over-expressed in the vast majority of prostate cancers. We performed spectroscopic PA imaging in an experimental model of prostate cancer, namely, in immunocompromised mice bearing PSMA+ (PC3 PIP) and PSMA- (PC3 flu) tumors through administration of the known PSMA-targeted fluorescence agent, YC-27. Differences in contrast between PSMA+ and isogenic control tumors were observed upon PA imaging, with PSMA+ tumors showing higher contrast in average of 66.07-fold with 5 mice at the 24-hour postinjection time points. These results were corroborated using standard near-infrared fluorescence imaging with YC-27, and the squared correlation between PA and fluorescence intensities was 0.89. Spectroscopic PA imaging is a new molecular imaging modality with sufficient sensitivity for targeting PSMA in vivo, demonstrating the potential applications for other saturable targets relevant to cancer and other disorders.


Subject(s)
Glutamate Carboxypeptidase II/metabolism , Photoacoustic Techniques , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Animals , Male , Mice , Optical Imaging , Ultrasonography
20.
Korean J Radiol ; 18(5): 821-827, 2017.
Article in English | MEDLINE | ID: mdl-28860899

ABSTRACT

OBJECTIVE: To investigate the feasibility of ex vivo multispectral photoacoustic (PA) imaging in differentiating cholesterol versus neoplastic polyps, and benign versus malignant polyps, of the gallbladder. MATERIALS AND METHODS: A total of 38 surgically confirmed gallbladder polyps (24 cholesterol polyps, 4 adenomas, and 10 adenocarcinomas) from 38 patients were prospectively included in this study. The surgical specimens were set on a gel pad immersed in a saline-filled container. The PA intensities of polyps were then measured, using two separate wavelength intervals (421-647 nm and 692-917 nm). Mann-Whitney U test was performed for the comparison of normalized PA intensities between the cholesterol and neoplastic polyps, and between the benign and malignant polyps. Kruskal-Wallis test was conducted for the comparison of normalized PA intensities among the cholesterol polyps, adenomas, and adenocarcinomas. RESULTS: A significant difference was observed in the normalized PA intensities between the cholesterol and neoplastic polyps at 459 nm (median, 1.00 vs. 0.73; p = 0.032). Comparing the benign and malignant polyps, there were significant differences in the normalized PA intensities at 765 nm (median, 0.67 vs. 0.78; p = 0.013), 787 nm (median, 0.65 vs. 0.77; p = 0.034), and 853 nm (median, 0.59 vs. 0.85; p = 0.028). The comparison of the normalized PA intensities among cholesterol polyps, adenomas, and adenocarcinomas demonstrated marginally significant differences at 765 nm (median, 0.67 vs. 0.66 vs. 0.78, respectively; p = 0.049). CONCLUSION: These preliminary results indicate that benign versus malignant gallbladder polyps might exhibit different spectral patterns on multispectral PA imaging.


Subject(s)
Gallbladder Neoplasms/diagnosis , Photoacoustic Techniques , Polyps/pathology , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology , Adenoma/diagnosis , Adenoma/pathology , Adult , Aged , Aged, 80 and over , Diagnosis, Differential , Female , Gallbladder Diseases/diagnosis , Gallbladder Neoplasms/pathology , Humans , Male , Middle Aged , Precancerous Conditions , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...