Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(2): 2704-2717, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297793

ABSTRACT

A better understanding of the formation of femtosecond (fs) laser-induced surface structures is key to the control of their morphological profiles for desired surface functionalities on metals. In this work, with fs laser pulse irradiation, the two stages of formation mechanisms of the columnar structures (CSs) grown above the surface level are investigated on pure Al plates in ambient air. Here, we find that the redeposition of ablated microscale clusters following fs laser pulses of irradiation acts as the nucleation sites of CS formation, which strongly affects their location and density within the laser spot. Furthermore, we suggest their structural growths and morphological shape changes are directly associated with the competition among four laser-impact hydrodynamical phenomena: laser ablation, subsequent molten metal flow, particles' redeposition, and metal vapor condensation with continued pulse irradiation.

2.
Opt Express ; 31(2): 1776-1786, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785205

ABSTRACT

Structurally colored materials present potential technological applications including anticounterfeiting tags for authentication due to the ability to controllably manipulate colors through nanostructuring. Yet, no applications of deep learning algorithms, known to discover meaningful structures in data with far-reaching optimization capabilities, to such optical authentication applications involving low-spatial-frequency laser-induced periodic surface structures (LSFLs) have been demonstrated to date. In this work, by fine-tuning one of the lightweight convolutional neural networks, MobileNetV1, we investigate the optical authentication capabilities of the structurally colorized images on metal surfaces fabricated by controlling the orientation of femtosecond LSFLs. We show that the structural color variations due to a broad range of the illumination incident angles combined with both the controlled orientations of LSFLs and differences in features captured in the image make this system suitable for deep learning-based optical authentication.

3.
Micromachines (Basel) ; 9(11)2018 Oct 27.
Article in English | MEDLINE | ID: mdl-30715050

ABSTRACT

Triboelectric nanogenerators (TENG), which utilize contact electrification of two different material surfaces accompanied by electrical induction has been proposed and is considered as a promising energy harvester. Researchers have attempted to form desired structures on TENG surfaces and successfully demonstrated the advantageous effect of surface topography on its electrical output performance. In this study, we first propose the structured Al (SA)-assisted TENG (SA-TENG), where one of the contact layers of the TENG is composed of a structured metal surface formed by a metal-to-metal (M2M) imprinting process. The fabricated SA-TENG generates more than 200 V of open-circuit voltage and 60 µA of short-circuit current through a simple finger tapping motion. Given that the utilization of the M2M imprinting process allows for the rapid, versatile and easily accessible structuring of various metal surfaces, which can be directly used as a contact layer of the TENG to substantially enhance its electrical output performance, the present study may considerably broaden the applicability of the TENG in terms of its fabrication standpoint.

4.
Nanoscale Res Lett ; 4(4): 364-370, 2009 Jan 24.
Article in English | MEDLINE | ID: mdl-20596495

ABSTRACT

We have demonstrated lithography-free, simple, and large area fabrication method for subwavelength antireflection structures (SAS) to achieve low reflectance of silicon (Si) surface. Thin film of Pt/Pd alloy on a Si substrate is melted and agglomerated into hemispheric nanodots by thermal dewetting process, and the array of the nanodots is used as etch mask for reactive ion etching (RIE) to form SAS on the Si surface. Two critical parameters, the temperature of thermal dewetting processes and the duration of RIE, have been experimentally studied to achieve very low reflectance from SAS. All the SAS have well-tapered shapes that the refractive index may be changed continuously and monotonously in the direction of incident light. In the wavelength range from 350 to 1800 nm, the measured reflectance of the fabricated SAS averages out to 5%. Especially in the wavelength range from 550 to 650 nm, which falls within visible light, the measured reflectance is under 0.01%.

SELECTION OF CITATIONS
SEARCH DETAIL
...