Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 665: 801-813, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38555748

ABSTRACT

The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion. The additional hydrophilic block of the polymer should stabilize the particles in solution and enable them to encapsulate a negatively charged drug in the presence of PE excess. We demonstrated that diblock copolymers, poly(ethylene oxide)-block-poly(N,N-dimethylaminoethyl methacrylate) and poly(ethylene oxide)-block-poly(N,N,N-trimethylammonioethyl methacrylate), consisting of a polycation block and a neutral hydrophilic block, reversibly co-assemble with insulin in pH range between 5 and 8. Using small-angle neutron and X-ray scattering (SANS, SAXS), we showed that insulin arrangement within formed particles is controlled by intermolecular electrostatic forces between protein molecules, and can be tuned by varying ionic strength. For the first time, we observed by fluorescence that formed protein/PE complexes with excess of positive charges exhibited potential for encapsulating and controlled release of negatively charged bivalent drugs, protoporphyrin-IX and zinc(II) protoporphyrin-IX, enabling the development of nanocarriers for combination therapies with adjustable charge, stability, internal structure, and size.


Subject(s)
Insulin , Protoporphyrins , Polyelectrolytes , Ethylene Oxide , Scattering, Small Angle , X-Ray Diffraction , Polymers/chemistry , Proteins , Isoelectric Point
2.
Langmuir ; 38(17): 5226-5236, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35166545

ABSTRACT

The structures of a molecular brush in a good solvent are investigated using synchrotron small-angle X-ray scattering in a wide range of concentrations. The brush under study, PiPOx239-g-PnPrOx14, features a relatively long poly(2-isopropenyl-2-oxazoline) (PiPOx) backbone and short poly(2-n-propyl-2-oxazoline) (PnPrOx) side chains. As a solvent, ethanol is used. By model fitting, the overall size and the persistence length as well as the interaction length and interaction strength are determined. At this, the interplay between form and structure factor is taken into account. The conformation of the molecular brush is traced upon increasing the solution concentration, and a rigid-to-flexible transition is found near the overlap concentration. Finally, the results of computer simulations of the molecular brush solutions confirm the experimental results.


Subject(s)
Solvents , Computer Simulation , Molecular Conformation , Solvents/chemistry
3.
Small ; 14(15): e1704310, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29498203

ABSTRACT

Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC71 BM more than that of the polymer. The deeper penetration of PC71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands.

SELECTION OF CITATIONS
SEARCH DETAIL
...