Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728878

ABSTRACT

Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.


Subject(s)
Apoptosis , Bradykinin , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Rats, Sprague-Dawley , tert-Butylhydroperoxide , Animals , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , tert-Butylhydroperoxide/toxicity , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Humans , Male , Bradykinin/pharmacology , Apoptosis/drug effects , Oxidative Stress/drug effects , Rats , Cells, Cultured , Receptor, Bradykinin B2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Female , Microspheres , Signal Transduction/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal
2.
Article in English | MEDLINE | ID: mdl-38807023

ABSTRACT

HSP70 exhibits neuroprotective, antioxidant, and anti-apoptotic properties, which are crucial in preventing spinal cord injury (SCI) induced by oxidative stress and apoptosis. In this study, we assessed the potential protective effects and underlying mechanisms of HSP70 on tert-butyl hydroperoxide (TBHP)-damaged PC12 cells in an in vitro model of SCI. To establish the model, PC12 cells were subjected to oxidative damage induced by TBHP, followed by overexpression of HSP70. Cell viability was assessed using the CCK8 kit, intracellular reactive oxygen species level was evaluated using a commercial kit, cell apoptosis was detected using the Annexin V-APC/7-ADD Apoptosis Detection Kit, and the oxidative stress level was determined using SOD and MDA assay kits. Western blot analysis was used to detect the expression levels of Bax, cleaved caspase-3, and Bcl-2 proteins. Furthermore, immunofluorescence staining and Western bolt were used to detect the expression levels of proteins associated with the Nrf2/HO-1 signaling pathway. We found that HSP70 overexpression reduced apoptosis and oxidative stress in TBHP-induced PC12 cells. Furthermore, it activated the Nrf2/HO-1 signaling pathway. In addition, the Nrf2 inhibitor ML385 attenuated the protective effects of HSP70 on TBHP-induced PC12 cells. In conclusion, HSP70 can partially alleviate TBHP-induced apoptosis and oxidative stress in PC12 cells by promoting the Nrf2/HO-1 signaling pathway.

3.
J Back Musculoskelet Rehabil ; 36(6): 1345-1354, 2023.
Article in English | MEDLINE | ID: mdl-37458019

ABSTRACT

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural disorder of the spine in adolescents, often associated with structural deformities in both coronal and axial positions. Apical vertex rotation (AVR) is one of the main indicators of axial deformity in patients with scoliosis. Currently, there are few studies on the impact of AVR in the treatment of AIS. OBJECTIVE: This study examined the influence of different AVR on AIS after brace treatment. METHODS: Data were collected from 106 AIS participants aged 11-16 years from the orthopedic outpatient clinic of the Second Hospital of Lanzhou University. Two orthopaedic professionals measured the Cobb angle, AVR and spinal mid-line offset before and after brace treatment, and descriptive and linear correlation analyses were used to determine the correlation between AVR and AIS measured parameters. RESULTS: (1) In AIS volunteers with the same AVR, the treatment effect of AIS with lumbar predominant curvature was higher than that of AIS with thoracic predominant curvature. The treatment effect tended to decrease with increasing AVR. (2) Spinal mid-line deviation was associated with AVR. For patients with AIS with I and II degrees of AVR, the treatment effect of spinal mid-line offset after bracing is better. For AIS patients with AVR III degrees and above, the degree of correction of spinal mid-line offset decreases with the continuous correction of Cobb angle. CONCLUSIONS: The efficacy of AIS was found to be related to the severity of AVR. The efficacy of AIS with predominantly lumbar curvature was significantly higher than that of AIS with predominantly thoracic curvature. The efficacy of treatment of mid-line spinal deviation also decreased with increasing AVR.


Subject(s)
Kyphosis , Scoliosis , Humans , Adolescent , Scoliosis/therapy , Rotation , Thoracic Vertebrae , Retrospective Studies , Treatment Outcome
5.
Neuroscience ; 517: 18-25, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36893983

ABSTRACT

N-acetylserotonin (NAS) is a chemical intermediate in melatonin biosynthesis. NAS and its derivative N-(2-(5-hydroxy-1H-indol-3-yl) ethyl)-2-oxopiperidine-3-carboxamide (HIOC) are potential therapeutic agents for traumatic brain injury, autoimmune encephalomyelitis, hypoxic-ischemic encephalopathy, and other diseases. Evidence shows that NAS and its derivative HIOC have neuroprotective properties, and can exert neuroprotective effects by inhibiting oxidative stress, anti-apoptosis, regulating autophagy dysfunction, and anti-inflammatory. In this review, we discussed the neuroprotective effects and related mechanisms of NAS and its derivative HIOC to provide a reference for follow-up research and applications.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Melatonin , Neuroprotective Agents , Animals , Humans , Neuroprotective Agents/pharmacology , Serotonin/pharmacology , Neuroprotection , Melatonin/pharmacology
6.
Exp Neurol ; 361: 114301, 2023 03.
Article in English | MEDLINE | ID: mdl-36538982

ABSTRACT

Traumatic spinal cord injury (TSCI) is a serious nervous system insult, and apoptosis in secondary injury is an important barrier to recovery from TSCI. Heat shock protein family A member 1A (HSPA1A) is a protective protein whose expression is elevated after stress. However, whether HSPA1A can inhibit apoptosis after spinal cord injury, and the potential mechanism of this inhibition, remain unclear. In this study, we established in vivo and in vitro models of TSCI and induced HSPA1A overexpression and silencing. HSPA1A upregulation promoted the recovery of neurological function and pathological morphology at the injury site, enhanced neurological cell survival, and inhibited apoptosis in rats following TSCI. In the in vitro model, HSPA1A overexpression inhibited H2O2-induced apoptosis, indicating that HSPA1A suppressed the expression of Bax, caspase-9, and cleaved-caspase-3, promoted the expression of Bcl-2. Furthermore, inhibition of HSPA1A expression can aggravate H2O2-induced apoptosis. We also found that HSPA1A overexpression activated the Wnt/ß-catenin signaling pathway, and that inhibition of this pathway attenuated the inhibitory effect of HSPA1A overexpression on apoptosis. Together, these results indicate that HSPA1A has neuroprotective effects against TSCI that may be exerted through activation of the Wnt/ß-catenin signaling pathway to inhibit apoptosis.


Subject(s)
Neuroprotective Agents , Spinal Cord Injuries , Animals , Rats , Apoptosis , HSP70 Heat-Shock Proteins/metabolism , Hydrogen Peroxide/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Rats, Sprague-Dawley , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Wnt Signaling Pathway
7.
Mediators Inflamm ; 2022: 2579003, 2022.
Article in English | MEDLINE | ID: mdl-35966334

ABSTRACT

Spinal cord injury (SCI) is a highly disabling disorder for which few effective treatments are available. Grape seed proanthocyanidins (GSPs) are polyphenolic compounds with various biological activities. In our preliminary experiment, GSP promoted functional recovery in rats with SCI, but the mechanism remains unclear. Therefore, we explored the protective effects of GSP on SCI and its possible underlying mechanisms. We found that GSP promoted locomotor recovery, reduced neuronal apoptosis, increased neuronal preservation, and regulated microglial polarisation in vivo. We also performed in vitro studies to verify the effects of GSP on neuronal protection and microglial polarisation and their potential mechanisms. We found that GSP regulated microglial polarisation and inhibited apoptosis in PC12 cells induced by M1-BV2 cells through the Toll-like receptor 4- (TLR4-) mediated nuclear factor kappa B (NF-κB) and phosphatidylinositol 3-kinase/serine threonine kinase (PI3K/AKT) signaling pathways. This suggests that GSP regulates microglial polarisation and prevents neuronal apoptosis, possibly by the TLR4-mediated NF-κB and PI3K/AKT signaling pathways.


Subject(s)
Neuroprotective Agents , Spinal Cord Injuries , Animals , Grape Seed Extract , Microglia/metabolism , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proanthocyanidins , Proto-Oncogene Proteins c-akt/metabolism , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Toll-Like Receptor 4/metabolism
8.
Cell Cycle ; 21(21): 2268-2282, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35758219

ABSTRACT

N-acetylserotonin (NAS) exerts neuroprotective, antioxidant, and anti-apoptotic effects. Oxidative stress and apoptosis are the primary causes of spinal cord injury (SCI). Herein, we explored potential protective effects and mechanisms of NAS in a neuron oxidative damage model in vitro. We established an oxidative damage model in PC12 cells induced by hydrogen peroxide (H2O2) and treated these cells with NAS. NAS enhanced the activity of superoxide dismutase and halted the increase in reactive oxygen species (ROS) and the expression of inducible nitric oxide synthase. Additionally, NAS promoted protein expression of Bcl-2, but inhibited protein expressions of Fas, FADD, cytochrome c, Bax, cleaved caspase-9, and cleaved caspase-3, namely, decreasing protein expression of the Fas and mitochondrial pathways. Furthermore, it reduced the rate of apoptosis and necroptosis-related protein expressions of MLKL and p-MLKL. Moreover, NAS promoted the protein expression of p-PI3K and p-AKT, and the addition of the PI3K inhibitor LY294002 partially attenuated the antioxidant stress and anti-apoptotic effects of NAS in H2O2 stimulated PC12 cells. In conclusion, NAS protected PC12 cells from apoptosis and oxidative stress induced by H2O2 by inhibiting ROS activity and activating the PI3K/AKT signaling pathway.


Subject(s)
Hydrogen Peroxide , Phosphatidylinositol 3-Kinases , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis , Caspase 3/metabolism , Caspase 9/metabolism , Cytochromes c/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , PC12 Cells , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Reactive Oxygen Species/metabolism , Serotonin/analogs & derivatives , Superoxide Dismutase/metabolism , bcl-2-Associated X Protein/metabolism
9.
Neuroscience ; 498: 311-324, 2022 08 21.
Article in English | MEDLINE | ID: mdl-35710066

ABSTRACT

Spinal cord injury (SCI) is a central nervous system trauma that can cause severe neurological impairment. A series of pathological and physiological changes after SCI (e.g., inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction) promotes further deterioration of the microenvironment at the site of injury, leading to aggravation of neurological function. The multifunctional transcription factor NF-E2 related factor 2 (Nrf2) has long been considered a key factor in antioxidant stress. Therefore, Nrf2 may be an ideal therapeutic target for SCI. A comprehensive understanding of the function and regulatory mechanism of Nrf2 in the pathophysiology of SCI will aid in the development of targeted therapeutic strategies for SCI. This review discusses the roles of Nrf2 in SCI, with the aim of aiding in further elucidation of SCI pathophysiology and in efforts to provide Nrf2-targeted strategies for the treatment of SCI.


Subject(s)
NF-E2-Related Factor 2 , Spinal Cord Injuries , Humans , Inflammation , Oxidative Stress , Signal Transduction , Spinal Cord
10.
Connect Tissue Res ; 63(6): 650-662, 2022 11.
Article in English | MEDLINE | ID: mdl-35491814

ABSTRACT

BACKGROUND: Low back pain is a common symptom of intervertebral disc degeneration (IDD), which seriously affects the quality of life of patients. The abnormal apoptosis and senescence of nucleus pulposus (NP) cells play important roles in the pathogenesis of IDD. Proanthocyanidins (PACs) are polyphenolic compounds with anti-apoptosis and anti-aging effects. However, their functions in NP cells are not yet clear. Therefore, this study was performed to explore the effects of PACs on NP cell apoptosis and aging and the underlying mechanisms of action. METHODS: Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined TUNEL assays. Levels of apoptosis-associated molecules (Bcl-2, Bax, C-caspase-3 and Caspase-9) were evaluated via western blot. The senescence was observed through SA-ß-gal staining and western blotting analysis was performed to observe the expression of senescence-related molecules (p-P53, P53, P21 and P16). RESULTS: Pretreatment with PACs exhibited protective effects against IL-1ß-induced NP cell apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. PACs could also alleviate the increase of p-p53, P21, and P16 in IL-1ß-treated NP cells. SA-ß-gal staining showed that IL-1ß-induced senescence of NP cells was prevented by PACs pertreatment. In addition, PACs activated PI3K/Akt pathway in IL-1ß-stimulated NP cells. However, these protected effects were inhibited after LY294002 treatment. CONCLUSION: The results of the present study showed that PACs inhibit IL-1ß-induced apoptosis and aging of NP cells by activating the PI3K/Akt pathway, and suggested that PACs have therapeutic potential for IDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Proanthocyanidins , Aging , Caspase 3/metabolism , Caspase 9/metabolism , Caspase 9/pharmacology , Cells, Cultured , Humans , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proanthocyanidins/metabolism , Proanthocyanidins/pharmacology , Proanthocyanidins/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Quality of Life , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology , Tumor Suppressor Protein p53/therapeutic use , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology
11.
J Cell Commun Signal ; 16(4): 515-530, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35412260

ABSTRACT

Matricellular proteins are responsible for regulating the microenvironment, the behaviors of surrounding cells, and the homeostasis of tissues. Periostin (POSTN), a non-structural matricellular protein, can bind to many extracellular matrix proteins through its different domains. POSTN usually presents at low levels in most adult tissues but is highly expressed in pathological sites such as in tumors and inflamed organs. POSTN can bind to diverse integrins to interact with multiple signaling pathways within cells, which is one of its core biological functions. Increasing evidence shows that POSTN can activate the TGF-ß, the PI3K/Akt, the Wnt, the RhoA/ROCK, the NF-κB, the MAPK and the JAK pathways to promote the occurrence and development of many diseases, especially cancer and inflammatory diseases. Furthermore, POSTN can interact with some pathways in an upstream and downstream relationship, forming complicated crosstalk. This article focuses on the interactions between POSTN and different signaling pathways in diverse diseases, attempting to explain the mechanisms of interaction and provide novel guidelines for the development of targeted therapies.

12.
J Invest Surg ; 35(4): 935-952, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34309468

ABSTRACT

Aim: This review summarized the recent intervertebral disc degeneration (IDD) models and described their advantages and potential disadvantages, aiming to provide an overview for the current condition of IDD model establishment and new ideas for new strategies development of the treatment and prevention of IDD. Methods: The database of PubMed was searched up to May 2021 with the following search terms: nucleus pulposus, annulus fibrosus, cartilage endplate, intervertebral disc(IVD), intervertebral disc degeneration, animal model, organ culture, bioreactor, inflammatory reaction, mechanical stress, pathophysiology, epidemiology. Any IDD model-related articles were collected and summarized.Results: The best IDD model should have the features of repeatability, measurability and controllability. There are a lot of aspects to be considered in the selection of animals. Mice, rats and rabbits are low-cost and easy to access. However, their IVD size and shape are more different from human anatomy than pigs, cattle, sheep and goats. Organ culture models and animal models are two options in model establishment for IDD. The IVD organ culture model can put the studying variables into the controllable system for transitional research. Unlike the animal model, the organ culture model can only be used to evaluate the short-term effects and it is not applicable in simulating the complex process of IDD. Similarly, the animal models induced by different methods also have their advantages and disadvantages. For studying the mechanism of IDD and the corresponding treatment and prevention strategies, the selection of model should be individualized based on the purpose of each study.Conclusions: Various models have different characteristics and scope of application due to their different rationales and methods of construction. Currently, there is no experimental model that can perfectly mimic the degenerative process of human IVD. Personalized selection of appropriate model based on study purpose and experimental designing can enhance the possibility to obtain reliable and real results.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Animals , Cattle , Disease Models, Animal , Inflammation , Intervertebral Disc Degeneration/etiology , Intervertebral Disc Degeneration/therapy , Mice , Rabbits , Rats , Sheep , Swine
13.
Article in English | MEDLINE | ID: mdl-34394398

ABSTRACT

Intervertebral disc degeneration (IDD) is one of the main causes of low back pain (LBP), which severely reduces the quality of life and imposes a heavy financial burden on the families of affected individuals. Current research suggests that IDD is a complex cell-mediated process. Inflammation, oxidative stress, mitochondrial dysfunction, abnormal mechanical load, telomere shortening, DNA damage, and nutrient deprivation contribute to intervertebral disc cell senescence and changes in matrix metabolism, ultimately causing IDD. Natural products are widespread, structurally diverse, afford unique advantages, and exhibit great potential in terms of IDD treatment. In recent years, increasing numbers of natural ingredients have been shown to inhibit the degeneration of nucleus pulposus cells through various modes of action. Here, we review the pharmacological effects of natural products on nucleus pulposus cells and the mechanisms involved. An improved understanding of how natural products target signalling pathways will aid the development of anti-IDD drugs. This review focuses on potential IDD drugs.

14.
Neurosci Lett ; 750: 135793, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33667598

ABSTRACT

Grape seed proanthocyanidins (GSP) are natural flavonoids with strong antioxidant and anti-apoptotic effects. Oxidative stress and neuronal apoptosis are major contributors to spinal cord injury (SCI). In this study, we assessed the potential protective effects of GSP on hydrogen peroxide (H2O2)-damaged pheochromocytoma-12 (PC12) cells in an in vitro model of SCI as well as the putative mechanism of action. We established a model using PC12 cells with oxidative damage induced by H2O2. Cells were treated with various concentrations of GSP (control group, 200 µmol/L H2O2 group, 5 µM GSP + H2O2 group, 10 µM GSP + H2O2 group, and 25 µM GSP + H2O2 group). The CCK-8 assay was used to determine cell activity. Dichloro-dihydro-fluorescein diacetate was used to detect intracellular reactive oxygen species (ROS), and flow cytometry was used to determine apoptosis rate. Western blot analysis was used to detect the expression of caspase-3, Bax, Bcl-2, and PI3K/AKT proteins. The results showed that GSP reduced H2O2-induced intracellular ROS and inhibited apoptosis. Furthermore, GSP inhibited the expression of caspase-3 and Bax, while promoting the expression of Bcl-2. In addition, GSP promoted the phosphorylation of PI3K and AKT. Moreover, a PI3K inhibitor (LY294002) weakened the protective effects of GSP on H2O2-induced PC12 cells. In conclusion, GSP pretreatment can protect PC12 cells from oxidative damage induced by H2O2 via the PI3K/AKT signaling pathway.


Subject(s)
Antioxidants/pharmacology , Neuroprotective Agents/pharmacology , Proanthocyanidins/pharmacology , Signal Transduction , Animals , Apoptosis/drug effects , Hydrogen Peroxide/toxicity , PC12 Cells , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Seeds/chemistry , Vitis/chemistry
15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(12): 1490-1498, 2020 Dec 28.
Article in English, Chinese | MEDLINE | ID: mdl-33473008

ABSTRACT

Changes in nuclear morphology are common in malignant tumors, but the underlying molecular mechanisms remain poorly understood. Lamins is involved in supporting nuclear structure, and the expression of Lamins is the molecular basis for nuclear morphological changes during tumor progression. In recent years, the research on the relationship between Lamins and malignant tumors has made great progress. Lamins is of great value in the diagnosis, treatment, and prognosis of various malignant tumors.


Subject(s)
Cell Nucleus , Neoplasms , Humans , Lamins/genetics , Neoplasms/genetics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...