Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37162909

ABSTRACT

Human genome sequencing studies have identified numerous loci associated with complex diseases. However, translating human genetic and genomic findings to disease pathobiology and therapeutic discovery remains a major challenge at multiscale interactome network levels. Here, we present a deep-learning-based ensemble framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that accurately predicts protein binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms, generating comprehensive structurally-informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods. We further systematically validated PIONEER predictions experimentally through generating 2,395 mutations and testing their impact on 6,754 mutation-interaction pairs, confirming the high quality and validity of PIONEER predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces after mapping mutations from ~60,000 germline exomes and ~36,000 somatic genomes. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from pan-cancer analysis of ~11,000 tumor whole-exomes across 33 cancer types. We show that PIONEER-predicted oncoPPIs are significantly associated with patient survival and drug responses from both cancer cell lines and patient-derived xenograft mouse models. We identify a landscape of PPI-perturbing tumor alleles upon ubiquitination by E3 ligases, and we experimentally validate the tumorigenic KEAP1-NRF2 interface mutation p.Thr80Lys in non-small cell lung cancer. We show that PIONEER-predicted PPI-perturbing alleles alter protein abundance and correlates with drug responses and patient survival in colon and uterine cancers as demonstrated by proteogenomic data from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.

2.
Elife ; 102021 12 23.
Article in English | MEDLINE | ID: mdl-34939924

ABSTRACT

Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here, we develop a strategy combining compartment-specific crosslinking immunoprecipitation (CLIP) and translating ribosome affinity purification (TRAP) in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many that have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type-specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies suggests a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.


The brain has over 100 billion neurons that together form vast networks to relay electrical signals. A neuron receives electrical signals from other neurons via branch-like structures known as dendrites. The signals then travel into the cell body of the neuron. If their sum reaches a threshold, they fire a new signal through a single outgoing projection known as the axon, which is connected to the dendrites of other neurons. A single neuron has thousands of dendrites that each receive inputs from different axons, and it is thought that the strengthening and weakening of these dendritic connections enables us to learn and store memories. Dendrites are filled with molecules known as messenger ribonucleic acids (mRNAs) that act as templates to make proteins. Axonal signals reaching the dendrites can trigger these mRNAs to make new proteins that strengthen or weaken the connections between the two neurons, which is believed to be necessary for generating long-term memories. A protein called FMRP is found in both the cell body and dendrites and is able to bind to and regulate the ability of mRNAs to make proteins. A loss of the gene encoding FMRP is the most common cause of inherited intellectual disability and autism in humans, but it remains unclear precisely what role this protein plays in learning and memory. Hale et al. used genetic and bioinformatics approaches to specifically study mRNAs in the dendrites and the cell body of a specific type of neuron involved in memory in mice. The experiments revealed that FMRP played different roles in the dendrites and cell body. In the dendrites, FMRP interacted with mRNAs encoding proteins that can change how the neuron responds to a signal from a neighboring neuron and may alter how strong the connections between the neurons are. On the other hand, FMRP in the cell body modulated the activities of mRNAs encoding proteins that in turn regulate the activities of genes. These findings change the way we think about how memory may work by suggesting that groups of mRNAs encoding proteins with certain activities are found in distinct parts of a single neuron. These observations offer new ways to approach intellectual disabilities and autism spectrum disorder.


Subject(s)
Cell Body/physiology , Dendrites/physiology , Fragile X Mental Retardation Protein/genetics , Gene Expression Regulation , Pyramidal Cells/physiology , RNA, Messenger/genetics , Animals , Female , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Pyramidal Cells/classification , Transcriptome
3.
Nat Commun ; 11(1): 5609, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154383

ABSTRACT

Polycomb Group (PcG) proteins organize chromatin at multiple scales to regulate gene expression. A conserved Sterile Alpha Motif (SAM) in the Polycomb Repressive Complex 1 (PRC1) subunit Polyhomeotic (Ph) has been shown to play an important role in chromatin compaction and large-scale chromatin organization. Ph SAM forms helical head to tail polymers, and SAM-SAM interactions between chromatin-bound Ph/PRC1 are believed to compact chromatin and mediate long-range interactions. To understand the underlying mechanism, here we analyze the effects of Ph SAM on chromatin in vitro. We find that incubation of chromatin or DNA with a truncated Ph protein containing the SAM results in formation of concentrated, phase-separated condensates. Ph SAM-dependent condensates can recruit PRC1 from extracts and enhance PRC1 ubiquitin ligase activity towards histone H2A. We show that overexpression of Ph with an intact SAM increases ubiquitylated H2A in cells. Thus, SAM-induced phase separation, in the context of Ph, can mediate large-scale compaction of chromatin into biochemical compartments that facilitate histone modification.


Subject(s)
DNA-Binding Proteins/chemistry , Drosophila Proteins/chemistry , Polycomb Repressive Complex 1/chemistry , Polycomb-Group Proteins/metabolism , Sterile Alpha Motif/physiology , Animals , Cell Compartmentation , Cell Line , Cell Nucleus/metabolism , Chromatin/metabolism , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Histones/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polymerization , Sterile Alpha Motif/genetics , Ubiquitination
4.
J Mol Biol ; 432(17): 4856-4871, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32628956

ABSTRACT

Polycomb Group proteins regulate gene expression by modifying chromatin. Polycomb Repressive Complex 1 (PRC1) has two activities: a ubiquitin ligase activity for histone H2A and a chromatin compacting activity. In Drosophila, the Posterior Sex Combs (PSC) subunit of PRC1 is central to both activities. The N-terminal of PSC assembles into PRC1, including partnering with dRING to form the ubiquitin ligase. The intrinsically disordered C-terminal region of PSC compacts chromatin and inhibits chromatin remodeling and transcription in vitro. Both regions of PSC are essential in vivo. To understand how these two activities may be coordinated in PRC1, we used crosslinking mass spectrometry to analyze the conformations of the C-terminal region of PSC in PRC1 and how they change on binding DNA. Crosslinking identifies interactions between the C-terminal region of PSC and the core of PRC1, including between N and C-terminal regions of PSC. New contacts and overall more compacted PSC C-terminal region conformations are induced by DNA binding. Protein footprinting of accessible lysine residues reveals an extended, bipartite candidate DNA/chromatin binding surface in the C-terminal region of PSC. Our data suggest a model in which DNA (or chromatin) follows a long path on the flexible disordered region of PSC. Intramolecular interactions of PSC detected by crosslinking can bring the high-affinity DNA/chromatin binding region close to the core of PRC1 without disrupting the interface between the ubiquitin ligase and the nucleosome. Our approach may be applicable to understanding the global organization of other large intrinsically disordered regions that bind nucleic acids.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila/metabolism , Polycomb Repressive Complex 1/chemistry , Polycomb Repressive Complex 1/metabolism , Animals , Binding Sites , Chromatin/chemistry , Chromatin/genetics , DNA-Binding Proteins/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Mass Spectrometry , Mutation , Polycomb Repressive Complex 1/genetics , Protein Domains
5.
Elife ; 82019 12 20.
Article in English | MEDLINE | ID: mdl-31860442

ABSTRACT

Loss of the RNA binding protein FMRP causes Fragile X Syndrome (FXS), the most common cause of inherited intellectual disability, yet it is unknown how FMRP function varies across brain regions and cell types and how this contributes to disease pathophysiology. Here we use conditional tagging of FMRP and CLIP (FMRP cTag CLIP) to examine FMRP mRNA targets in hippocampal CA1 pyramidal neurons, a critical cell type for learning and memory relevant to FXS phenotypes. Integrating these data with analysis of ribosome-bound transcripts in these neurons revealed CA1-enriched binding of autism-relevant mRNAs, and CA1-specific regulation of transcripts encoding circadian proteins. This contrasted with different targets in cerebellar granule neurons, and was consistent with circadian defects in hippocampus-dependent memory in Fmr1 knockout mice. These findings demonstrate differential FMRP-dependent regulation of mRNAs across neuronal cell types that may contribute to phenotypes such as memory defects and sleep disturbance associated with FXS.


Subject(s)
Autistic Disorder/metabolism , CA1 Region, Hippocampal/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Memory Disorders/genetics , Pyramidal Cells/metabolism , Animals , Autistic Disorder/genetics , Autistic Disorder/physiopathology , CA1 Region, Hippocampal/cytology , Cerebellum/cytology , Cerebellum/metabolism , Circadian Clocks/genetics , Circadian Clocks/physiology , Disease Models, Animal , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Fragile X Syndrome/physiopathology , Gene Expression Regulation , Humans , Memory Disorders/metabolism , Memory Disorders/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism
6.
FEBS Lett ; 592(14): 2489-2498, 2018 07.
Article in English | MEDLINE | ID: mdl-29932462

ABSTRACT

In metazoans, U6 small nuclear RNA (snRNA) gene promoters utilize a proximal sequence element (PSE) recognized by the small nuclear RNA-activating protein complex (SNAPc). SNAPc interacts with the transcription factor TFIIIB, which consists of the subunits TBP, Brf1 (Brf2 in vertebrates), and Bdp1. Here, we show that, in Drosophila melanogaster, DmSNAPc directly recruits Bdp1 to the U6 promoter, and we identify an 87-residue region of Bdp1 involved in this interaction. Importantly, Bdp1 recruitment requires that DmSNAPc be bound to a U6 PSE rather than a U1 PSE. This is consistent with the concept that DmSNAPc adopts different conformations on U6 and U1 PSEs, which lead to the subsequent recruitment of distinct general transcription factors and RNA polymerases for U6 and U1 gene transcription.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Drosophila Proteins/metabolism , Promoter Regions, Genetic , RNA, Small Nuclear/metabolism , Transcription Factor TFIIIB/metabolism , Animals , Binding Sites/genetics , Cells, Cultured , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Protein Binding , Protein Stability , Transcription, Genetic
7.
FEBS Lett ; 590(10): 1488-97, 2016 05.
Article in English | MEDLINE | ID: mdl-27112515

ABSTRACT

RNA polymerase III-transcribed U6 snRNA genes have gene-external promoters that contain TATA boxes. U6 TATA sequences are bound by TFIIIB that in Drosophila contains the three subunits TBP, Brf1, and Bdp1. The overall structure of TFIIIB is still not well understood. We have therefore studied the mode of TFIIIB binding to DNA by site-specific protein-DNA photo-cross-linking. The results indicate that a portion of Brf1 is sandwiched between Bdp1 and TBP upstream of the TATA box. Furthermore, Bdp1 traverses the DNA under the N-terminal stirrup of TBP to interact with the DNA (and very likely Brf1) downstream of the TATA sequence.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/metabolism , TATA-Box Binding Protein/metabolism , Transcription Factor TFIIIB/metabolism , Animals , Binding Sites , Cell Line , Cross-Linking Reagents , Drosophila Proteins/chemistry , Models, Molecular , Promoter Regions, Genetic , Protein Binding , TATA Box , TATA-Box Binding Protein/chemistry , Transcription Factor TFIIIB/chemistry
8.
J Biol Chem ; 288(38): 27564-27570, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23955442

ABSTRACT

In the fruit fly Drosophila melanogaster, RNA polymerase III transcription was found to be dependent not upon the canonical TATA box-binding protein (TBP) but instead upon the TBP-related factor 1 (TRF1) (Takada, S., Lis, J. T., Zhou, S., and Tjian, R. (2000) Cell 101, 459-469). Here we confirm that transcription of fly tRNA genes requires TRF1. However, we unexpectedly find that U6 snRNA gene promoters are occupied primarily by TBP in cells and that knockdown of TBP, but not TRF1, inhibits U6 transcription in cells. Moreover, U6 transcription in vitro effectively utilizes TBP, whereas TBP cannot substitute for TRF1 to promote tRNA transcription in vitro. Thus, in fruit flies, different classes of RNA polymerase III promoters differentially utilize TBP and TRF1 for the initiation of transcription.


Subject(s)
Drosophila Proteins/metabolism , Promoter Regions, Genetic/physiology , RNA Polymerase III/metabolism , TATA Box Binding Protein-Like Proteins/metabolism , TATA-Box Binding Protein/metabolism , Transcription, Genetic/physiology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , RNA Polymerase III/genetics , RNA, Small Nuclear/biosynthesis , RNA, Small Nuclear/genetics , RNA, Transfer/biosynthesis , RNA, Transfer/genetics , TATA Box Binding Protein-Like Proteins/genetics , TATA-Box Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...