Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497531

ABSTRACT

Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA-D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.


Subject(s)
Gasdermins , Inflammasomes , Animals , Caspase 1/metabolism , Caspases/metabolism , Inflammasomes/metabolism , Amphibians , Reptiles , Birds
2.
bioRxiv ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37987010

ABSTRACT

Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles and birds gave rise to GSDMA-D in mammals. Uniquely in our tree, amphibian, reptile and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.

3.
J Cell Sci ; 135(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-36098620

ABSTRACT

Necroptosis, or programmed necrosis, is an inflammatory form of cell death with important functions in host defense against pathogens and tissue homeostasis. The four cytosolic receptor-interacting protein kinase homotypic interaction motif (RHIM)-containing adaptor proteins RIPK1, RIPK3, TRIF (also known as TICAM1) and ZBP1 mediate necroptosis induction in response to infection and cytokine or innate immune receptor activation. Activation of the RHIM adaptors leads to phosphorylation, oligomerization and membrane targeting of the necroptosis effector protein mixed lineage kinase domain-like (MLKL). Active MLKL induces lesions on the plasma membrane, leading to the release of pro-inflammatory damage-associated molecular patterns (DAMPs). Thus, activities of the RHIM adaptors and MLKL are tightly regulated by posttranslational modifications to prevent inadvertent release of immunogenic contents. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the regulatory mechanisms of necroptosis and its biological functions in tissue homeostasis, pathogen infection and other inflammatory diseases.


Subject(s)
Apoptosis , Necroptosis , Cell Death , Humans , Necroptosis/genetics , Necrosis , Phosphorylation
4.
STAR Protoc ; 2(4): 100871, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34661172

ABSTRACT

Vaccinia virus is a large double-stranded DNA virus that is widely used to express foreign genes from different origins. We generated recombinant vaccinia virus that expresses a viral inhibitor to examine its effect on virus-induced necroptosis. We provide a detailed protocol to describe the generation of recombinant vaccinia virus, validation of protein expression, and determination of necroptosis using live cell imaging. This approach can be adapted to examine the effect of other cell death regulators on virus-induced cell death. For complete details on the use and execution of this protocol, please refer to Liu et al. (2021).


Subject(s)
DNA, Recombinant/genetics , Necroptosis/genetics , Recombinant Proteins/genetics , Vaccinia virus/genetics , Animals , Cell Line , Cells, Cultured/virology , Chlorocebus aethiops , DNA, Recombinant/metabolism , Mice , Plasmids/genetics , Recombinant Proteins/metabolism , Vero Cells
5.
FASEB J ; 34(3): 4369-4383, 2020 03.
Article in English | MEDLINE | ID: mdl-32027418

ABSTRACT

In tumor necrosis factor (TNF) signaling, phosphorylation and activation of receptor interacting protein kinase 1 (RIPK1) by upstream kinases is an essential checkpoint in the suppression of TNF-induced cell death. Thus, discovery of pharmacological agents targeting RIPK1 may provide new strategies for improving the therapeutic efficacy of TNF. In this study, we found that 3-O-acetylrubianol C (3AR-C), an arborinane triterpenoid isolated from Rubia philippinesis, promoted TNF-induced apoptotic and necroptotic cell death. To identify the molecular mechanism, we found that in mouse embryonic fibroblasts, 3AR-C drastically upregulated RIPK1 kinase activity by selectively inhibiting IKKß. Notably, 3AR-C did not interfere with IKKα or affect the formation of the TNF receptor1 (TNFR1) complex-I. Moreover, in human cancer cells, 3AR-C was only sufficient to sensitize TNF-induced cell death when c-FLIPL expression was downregulated to facilitate the formation of TNFR1 complex-II and necrosome. Taken together, our study identified a novel arborinane triterpenoid 3AR-C as a potent activator of TNF-induced cell death via inhibition of IKKß phosphorylation and promotion of the cytotoxic potential of RIPK1, thus providing a rationale for further development of 3AR-C as a selective IKKß inhibitor to overcome TNF resistance in cancer therpay.


Subject(s)
Apoptosis/physiology , I-kappa B Kinase/metabolism , Programmed Cell Death 1 Receptor/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/physiology , Humans , I-kappa B Kinase/genetics , Magnetic Resonance Spectroscopy , Mice , Programmed Cell Death 1 Receptor/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
Sci Rep ; 9(1): 13505, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31534206

ABSTRACT

Plant-derived lignans have numerous biological effects including anti-tumor and anti-inflammatory activities. Screening of purified constituents of Rubia philippinensis from human glioblastoma cells resistant to TNF-related apoptosis-inducing ligand (TRAIL) has suggested that the lignan pinoresinol was a highly active TRAIL sensitizer. Here we show that treatment with nontoxic doses of pinoresinol in combination with TRAIL induced rapid apoptosis and caspase activation in many types of glioblastoma cells, but not in normal astrocytes. Analyses of apoptotic signaling events revealed that pinoresinol enhanced the formation of TRAIL-mediated death-inducing signaling complex (DISC) and complete processing of procaspase-8 within the DISC in glioblastoma cells, in which caspase-8 was inactivated. Mechanistically, pinoresinol downregulated the expression of cellular FLICE-inhibitory protein (cFLIPL) and survivin through proteasome-mediated degradation, without affecting death receptors or downstream intracellular apoptosis-related proteins. Furthermore, the sensitization of TRAIL-mediated apoptosis by pinoresinol strictly depended on the expression level of cFLIPL, which was regulated through de novo protein synthesis, rather than by NF-κB or p53 signaling. Taken together, our results indicate that pinoresinol facilitates DISC-mediated caspase-8 activation by targeting cFLIPL in an early event in apoptotic signaling, which provides a potential therapeutic module for TRAIL-based chemotherapy.


Subject(s)
Apoptosis/drug effects , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Furans/pharmacology , Lignans/pharmacology , Caspase 8/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Furans/metabolism , Glioblastoma/metabolism , Humans , Lignans/metabolism , NF-kappa B/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Rubia/metabolism , Signal Transduction/drug effects , TNF-Related Apoptosis-Inducing Ligand/drug effects , TNF-Related Apoptosis-Inducing Ligand/metabolism
7.
Arch Pharm Res ; 42(1): 76-87, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30610617

ABSTRACT

Programmed cell death is critical to the physiological function of multi-cellular organisms, controlling development, immunity, inflammation, and cancer progression. Death receptor (DR)-mediated regulation of a protease functions as a second messenger to initiate a death signal cascade to induce apoptosis or necroptosis. Recently, it has become clear that post-translational modifications (PTMs) of signaling components in the DR complex are highly complex, temporally controlled, and tightly regulated, and play an important role in cell death signaling. This review focuses on the molecular mechanisms and pathophysiological consequences of PTMs on the formation of the DR signaling complex, especially with respect to tumor necrosis factor receptor 1 (TNFR1). Furthermore, characterization of the role of PTMs in spatially different TNFR1 complexes (complexes I and II), especially with respect to the role of ubiquitination and phosphorylation of receptor interacting protein 1 (RIP1) in programmed cell death in cancer cells, will be reviewed. By integrating recently gained insight of the functional importance of PTMs in complex I or II, this review discusses how the concerted action of PTMs results in life or death upon DR ligation. Finally, the emerging concept of a sequential cell death checkpoint by the PTMs of RIP1, which may reveal novel therapeutic opportunities for the treatment of some cancers, will be discussed.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/trends , Neoplasms/metabolism , Protein Processing, Post-Translational/physiology , Receptors, Death Domain/metabolism , Animals , Cell Death/drug effects , Cell Death/physiology , Drug Delivery Systems/methods , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Receptors, Death Domain/antagonists & inhibitors , Receptors, Death Domain/genetics
8.
Biochem Pharmacol ; 158: 243-260, 2018 12.
Article in English | MEDLINE | ID: mdl-30359578

ABSTRACT

Despite recent tremendous progress, targeting of TNF-related apoptosis-inducing ligand (TRAIL) as a cancer therapy has limited success in many clinical trials, in part due to inactivation of death inducing signaling complex (DISC)-mediated caspase-8 signaling cascade in highly malignant tumors such as glioblastoma. In this study, screening of constituents derived from Astilbe rivularis for TRAIL-sensitizing activity identified C-27-carboxylated oleanolic acid derivatives (C27OAs) including 3ß-hydroxyolean-12-en-27-oic acid (C27OA-1), 3ß,6ß,7α-trihydroxyolean-12-en-27-oic acid (C27OA-2), and 3ß-trans-p-coumaroyloxy-olean-12-en-27-oic acid (C27OA-3) as novel TRAIL sensitizers. Interestingly, these C27OAs did not affect apoptotic cell death induced by either ligation of other death receptor (DR) types, such as TNF and Fas or DNA damaging agents, which suggests that C27OAs effectively and selectively sensitize TRAIL-mediated caspase-8 activation. Mechanistically, C27OAs upregulate the expression of cell surface DR5 and DISC formation without affecting downstream intracellular apoptosis-related proteins. The upregulation of DR5 expression by C27OAs strictly depends on transactivation of C/EBP homology protein, which is regulated through the p38 MAPK pathway, rather than p53 and intracellular reactive oxygen species status. Taken together, our results identify the novel C27OAs as TRAIL sensitizers targeting the upstream DISC assembly of DR5, and provide a rationale for further development of C27OAs for facilitating TRAIL-based chemotherapy in glioblastoma patients.


Subject(s)
Glioblastoma/metabolism , Oleanolic Acid/pharmacology , Receptors, TNF-Related Apoptosis-Inducing Ligand/biosynthesis , TNF-Related Apoptosis-Inducing Ligand/biosynthesis , Transcription Factor CHOP/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/genetics , Transcription Factor CHOP/genetics , Up-Regulation/drug effects , Up-Regulation/physiology , p38 Mitogen-Activated Protein Kinases/genetics
9.
Mol Ther Nucleic Acids ; 5(9): e367, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27673563

ABSTRACT

Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet)-regulated system. Exploiting a Drosophila ecdysone receptor (EcR)-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+) and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site). Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion.

10.
Biochem Pharmacol ; 121: 52-66, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27664853

ABSTRACT

A specific small-molecule inhibitor of the TLR4 signaling complex upstream of the IKK would likely provide therapeutic benefit for NF-κB-mediated inflammatory disease. We previously identified brazilin as a selective upstream IKK inhibitor targeting the Myddosome complex. In this study, using a cell-based ubiquitination assay for IRAK1 and a chemical library comprising a series of structural analogues of brazilin, a novel small molecule, 2-hydroxy-5,6-dihydroisoindolo[1,2-a]isoquinoline-3,8-dione (IinQ), was identified as a selective and potent inhibitor of IRAK1-dependent NF-κB activation upon TLR4 ligation. In RAW264.7 macrophages, IinQ drastically suppressed activation of upstream IKK signaling events including membrane-bound IRAK1 ubiquitination and IKK phosphorylation by the TLR4 ligand, resulting in reduced expression of proinflammatory mediators including IL-6, TNF-α, and nitric oxide. Interestingly, IinQ did not suppress NF-κB activation via the TLR3 ligand, DNA damaging agents, or a protein kinase C activator, indicating IinQ is specific for TLR4 signaling. Analysis of upstream signaling events further confirmed that IinQ disrupts the MyD88-IRAK1-TRAF6 complex formation induced by LPS treatment, without affecting TLR4 oligomerization. Moreover, intravenous administration of IinQ significantly reduced lethality and attenuated systemic inflammatory responses in an in vivo mouse model of endotoxin shock following LPS challenge. Thus, IinQ represents a novel class of brazilin analogues with improved potency and specificity toward disruption of Myddosome complex formation in TLR4 signaling, indicating that IinQ may be a promising therapeutic candidate for the treatment of systemic inflammatory diseases.


Subject(s)
I-kappa B Kinase/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Isoindoles/pharmacology , Isoquinolines/pharmacology , Myeloid Differentiation Factor 88/metabolism , Systemic Inflammatory Response Syndrome/drug therapy , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cell Line , Female , Isoindoles/chemical synthesis , Isoindoles/chemistry , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Systemic Inflammatory Response Syndrome/metabolism , Ubiquitination/drug effects
11.
Sci Rep ; 6: 25094, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27117478

ABSTRACT

Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades.


Subject(s)
Cell Death/drug effects , Plant Extracts/metabolism , Receptors, Death Domain/metabolism , Terminalia/chemistry , Glucosides/isolation & purification , Glucosides/metabolism , Hydrolyzable Tannins/isolation & purification , Hydrolyzable Tannins/metabolism , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors
12.
PLoS One ; 10(8): e0136122, 2015.
Article in English | MEDLINE | ID: mdl-26295477

ABSTRACT

Brazilin is an active compound of Caesalpinia sappan L. (Leguminosae), which possesses pro-apoptotic and anti-inflammation potentials depending on the specific cell type. However, it is largely unknown whether autophagy is implicated in the mechanism underlying its chemotherapeutic and anti-inflammatory effects in rheumatoid arthritis (RA). Here, we show that treatment of RA fibroblast-like synoviocytes (FLS) with brazilin results in enhanced level of autophagic flux, evidenced by accumulation of autophagosome and increased level of lipidated LC3 (LC3-II), which is mainly mediated by enhanced production of reactive oxygen species (ROS). Interestingly, long-term exposure of brazilin was able to restore cell survival against the cytotoxity, exclusively in RA FLS, but not in normal fibroblast. Importantly, such a restoration from brazilin-induced cytotoxity in RA FLS was completely abrogated after co-treatment with autophagy inhibitors including NH4Cl or chloroquine. Furthermore, we found that the pretreatment of RA FLS with brazilin reduced LPS- or TNF-induced NF-κB activation and the secretion of inflammatory cytokines in parallel with the enhanced autophagic flux. Such anti-NF-κB potentials of brazilin were drastically masked in RA FLS when autophagy was suppressed. These results suggest that brazilin is capable of activating autophagy exclusively in RA FLS, and such inducible autophagy promotes cell survival and limits inflammatory response.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Rheumatoid/drug therapy , Autophagy/drug effects , Benzopyrans/pharmacology , Fibroblasts/drug effects , Fibroblasts/pathology , Synovial Membrane/cytology , Animals , Anti-Inflammatory Agents/chemistry , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Benzopyrans/chemistry , Caesalpinia/chemistry , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/immunology , Humans , Mice , NF-kappa B/immunology , NIH 3T3 Cells , Reactive Oxygen Species/immunology , Synovial Membrane/drug effects , Synovial Membrane/immunology , Synovial Membrane/pathology
13.
Biochem Pharmacol ; 89(4): 515-25, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24735611

ABSTRACT

The ligation of interleukin-1 receptor (IL-1R) or tumor necrosis factor receptor 1 (TNFR1) induces the recruitment of adaptor proteins and their concomitant ubiquitination to the proximal receptor signaling complex, respectively. Such are upstream signaling events of IKK that play essential roles in NF-κB activation. Thus, the discovery of a substance that would modulate the recruitment of key proximal signaling elements at the upstream level of IKK has been impending in this field of study. Here, we propose that brazilin, an active compound of Caesalpinia sappan L. (Leguminosae), is a potent NF-κB inhibitor that selectively disrupts the formation of the upstream IL-1R signaling complex. Analysis of upstream signaling events revealed that brazilin markedly abolished the IL-1ß-induced polyubiquitination of IRAK1 and its interaction with IKK-γ counterpart. Notably, pretreatment of brazilin drastically interfered the recruitment of the receptor-proximal signaling components including IRAK1/4 and TRAF6 onto MyD88 in IL-1R-triggerd NF-κB activation. Interestingly, brazilin did not affect the TNF-induced RIP1 ubiquitination and the recruitment of RIP1 and TRAF2 to TNFR1, suggesting that brazilin is effective in selectively suppressing the proximal signaling complex formation of IL-1R, but not that of TNFR1. Moreover, our findings suggest that such a disruption of IL-1R-proximal complex formation by brazilin is not mediated by affecting the heterodimerization of IL-1R and IL-1RAcP. Taken together, the results suggest that the anti-IKK activity of brazilin is induced by targeting IKK upstream signaling components and subsequently disrupting proximal IL-1 receptor signaling complex formation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzopyrans/pharmacology , I-kappa B Kinase/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Caesalpinia/chemistry , Ethnopharmacology , Genes, Reporter/drug effects , HEK293 Cells , HeLa Cells , Humans , I-kappa B Kinase/metabolism , I-kappa B Proteins/antagonists & inhibitors , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Molecular Structure , NF-kappa B/agonists , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, Interleukin-1/agonists , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Republic of Korea , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Ubiquitination/drug effects , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...