Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
iScience ; 27(7): 110248, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39015148

ABSTRACT

Appropriate ingestion of salt is essential for physiological processes such as ionic homeostasis and neuronal activity. Generally, low concentrations of salt elicit attraction, while high concentrations elicit aversive responses. Here, we observed that sugar neurons in the L sensilla of the Drosophila labellum cf. responses to NaCl, while sugar neurons in the S-c sensilla do not respond to NaCl, suggesting that gustatory receptor neurons involved in NaCl sensing may employ diverse molecular mechanisms. Through an RNAi screen of the entire Ir and ppk gene families and molecular genetic approaches, we identified IR76b, IR25a, and IR56b as necessary components for NaCl sensing in the Drosophila labellum. Co-expression of these three IRs in heterologous systems such as S2 cells or Xenopus oocytes resulted in a current in response to sodium stimulation, suggesting formation of a sodium-sensing complex. Our results should provide insights for research on the diverse combinations constituting salt receptor complexes.

2.
Nat Commun ; 14(1): 7345, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963863

ABSTRACT

The anion channel SLAC1 functions as a crucial effector in the ABA signaling, leading to stomata closure. SLAC1 is activated by phosphorylation in its intracellular domains. Both a binding-activation model and an inhibition-release model for activation have been proposed based on only the closed structures of SLAC1, rendering the structure-based activation mechanism controversial. Here we report cryo-EM structures of Arabidopsis SLAC1 WT and its phosphomimetic mutants in open and closed states. Comparison of the open structure with the closed ones reveals the structural basis for opening of the conductance pore. Multiple phosphorylation of an intracellular domain (ICD) causes dissociation of ICD from the transmembrane domain. A conserved, positively-charged sequence motif in the intracellular loop 2 (ICL2) seems to be capable of sensing of the negatively charged phosphorylated ICD. Interactions between ICL2 and ICD drive drastic conformational changes, thereby widening the pore. From our results we propose that SLAC1 operates by a mechanism combining the binding-activation and inhibition-release models.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Cryoelectron Microscopy , Abscisic Acid , Plant Stomata/physiology , Membrane Proteins , Anions
3.
BMB Rep ; 54(8): 393-402, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34078529

ABSTRACT

In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice. [BMB Reports 2021; 54(8): 393-402].


Subject(s)
Motor Activity/physiology , Proprioception/genetics , Proprioception/physiology , Animals , Caenorhabditis elegans , Drosophila , Feedback, Sensory/physiology , Humans , Kinesthesis/physiology , Locomotion/physiology , Mice , Motor Neurons/physiology , Postural Balance/physiology , Sensory Receptor Cells/physiology
4.
Mol Cells ; 43(6): 572-580, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32484163

ABSTRACT

Transient receptor potential ankyrin 1 from rattlesnakes (rsTRPA1) and boas (bTRPA1) was previously proposed to underlie thermo-sensitive infrared sensing based on transcript enrichment in infrared-sensing neurons and hyper-thermosensitivity expressed in Xenopus oocytes. It is unknown how these TRPA1s show thermosensitivities that overwhelm other thermoreceptors, and why rsTRPA1 is more thermosensitive than bTRPA1. Here, we show that snake TRPA1s differentially require Ca2+ for hyper-thermosensitivity and that predisposition to cytosolic Ca2+ potentiation correlates with superior thermosensitivity. Extracellularly applied Ca2+ upshifted the temperature coefficients (Q10s) of both TRPA1s, for which rsTRPA1, but not bTRPA1, requires cytosolic Ca2+. Intracellular Ca2+ chelation and substitutive mutations of the conserved cytosolic Ca2+-binding domain lowered rsTRPA1 thermosensitivity comparable to that of bTRPA1. Thapsigargin-evoked Ca2+ or calmodulin little affected rsTRPA1 activity or thermosensitivity, implying the importance of precise spatiotemporal action of Ca2+. Remarkably, a single rattlesnake-mimicking substitution in the conserved but presumably dormant cytosolic Ca2+-binding domain of bTRPA1 substantially enhanced thermosensitivity through cytosolic Ca2+ like rsTRPA1, indicating the capability of this single site in the determination of both cytosolic Ca2+ dependence and thermosensitivity. Collectively, these data suggest that Ca2+ is essential for the hyper-thermosensitivity of these TRPA1s, and cytosolic potentiation by permeating Ca2+ may contribute to the natural variation of infrared senses between rattlesnakes and boas.


Subject(s)
Boidae/metabolism , Calcium/metabolism , Crotalus/metabolism , Cytosol/metabolism , Genetic Variation , Temperature , Transient Receptor Potential Channels/genetics , Amino Acid Sequence , Animals , Cations, Divalent/pharmacology , Chelating Agents/pharmacology , Transient Receptor Potential Channels/chemistry , Transient Receptor Potential Channels/metabolism , Xenopus
5.
Front Microbiol ; 11: 798, 2020.
Article in English | MEDLINE | ID: mdl-32477288

ABSTRACT

Five types of Escherichia coli strains were obtained and sequenced: colistin-susceptible (CL-S) strains, in vitro induced colistin-resistant (CL-IR) strains, mcr-1-negative colistin-resistant strains from livestock (CL-chrR), mcr-1-positive colistin-resistant strains (CL-mcrR), and mcr-1-transferred transconjugants (TC-mcr). Amino acid alterations of PmrAB, PhoPQ, and EptA were identified, and their mRNA expression was measured. Their growth rate was evaluated, and an in vitro competition assay was performed. Virulence was compared through serum resistance and survival in macrophages and Drosophila melanogaster. CL-IR and CL-chrR strains were colistin-resistant due to amino acid alterations in PmrAB, PhoPQ, or EptA, and their overexpression. All colistin-resistant strains did not show reduced growth rates compared with CL-S strains. CL-IR and CL-chrR strains were less competitive than the susceptible strain, but CL-mcrR strains were not. In addition, TC-mcr strains were also significantly more competitive than their respective parental susceptible strain. CL-IR strains had similar or decreased survival rates in human serum, macrophages, and fruit flies, compared with their parental, susceptible strains. CL-chrR strains were also less virulent than CL-S strains. Although CL-mcrR strains showed similar survival rates in human serum and fruit fly to CL-S strains, the survival rates of TC-mcr strains decreased significantly in human serum, macrophages, and fruit flies, compared with their susceptible recipient strain (J53). Chromosome-mediated, colistin-resistant E. coli strains have a fitness cost, but plasmids bearing mcr-1 do not increase the fitness burden of E. coli. Along with high usage of polymyxins, the no fitness cost of mcr-1-positive strains may facilitate rapid spread of colistin resistance.

6.
Proc Natl Acad Sci U S A ; 116(24): 12013-12018, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31138707

ABSTRACT

Pigments often inflict tissue-damaging and proaging toxicity on light illumination by generating free radicals and reactive oxygen species (ROS). However, the molecular mechanism by which organisms sense phototoxic pigments is unknown. Here, we discover that Transient Receptor Potential Ankyrin 1-A isoform [TRPA1(A)], previously shown to serve as a receptor for free radicals and ROS induced by photochemical reactions, enables Drosophila melanogaster to aphotically sense phototoxic pigments for feeding deterrence. Thus, TRPA1(A) detects both cause (phototoxins) and effect (free radicals and ROS) of photochemical reactions. A group of pigment molecules not only activates TRPA1(A) in darkness but also generates free radicals on light illumination. Such aphotic detection of phototoxins harboring the type 1 (radical-generating) photochemical potential requires the nucleophile-sensing ability of TRPA1. In addition, agTRPA1(A) from malaria-transmitting mosquitoes Anopheles gambiae heterologously produces larger current responses to phototoxins than Drosophila TRPA1(A), similar to their disparate nucleophile responsiveness. Along with TRPA1(A)-stimulating capabilities, type 1 phototoxins exhibit relatively strong photo-absorbance and low energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. However, TRPA1(A) activation is more highly concordant to type 1 phototoxicity than are those photochemical parameters. Collectively, nucleophile sensitivity of TRPA1(A) allows flies to taste potential phototoxins for feeding deterrence, preventing postingestive photo-injury. Conversely, pigments need to bear high nucleophilicity (electron-donating propensity) to act as type 1 phototoxins, which is consistent with the fact that transferring photoexcited electrons from phototoxins to other molecules causes free radicals. Thus, identification of a sensory mechanism in Drosophila reveals a property fundamental to type 1 phototoxins.


Subject(s)
Dermatitis, Phototoxic/metabolism , Drosophila Proteins/metabolism , Ion Channels/metabolism , Taste/physiology , Animals , Anopheles/metabolism , Drosophila melanogaster/metabolism , Free Radicals/metabolism , Oocytes/metabolism , Pigments, Biological/metabolism , Protein Isoforms/metabolism , Reactive Oxygen Species/metabolism , Xenopus laevis/metabolism
7.
J Microbiol ; 56(9): 665-672, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30141159

ABSTRACT

Nine Klebsiella pneumoniae isolates coproducing NDM-1 and OXA-232 carbapenemases were successively isolated from a single patient. Although they were isolated simultaneously and were isogenic, they presented different colony phenotypes (matt and mucoid). All nine isolates were resistant to most antibiotics except colistin and fosfomycin. In addition, matt-type isolates were resistant to tigecycline. No differences were detected in the cps cluster sequences, except for the insertion of IS5 in the wzb gene of two matt-type isolates. In vitro virulence assays based on production of capsular polysaccharide, biofilm formation, and resistance to human serum indicated that the mucoid-type isolates were significantly more virulent than the matt-type. In addition, mucoid-type isolates showed higher survival rates than the matt-type ones in infection experiments in the fruit fly, suggesting a higher virulence of K. pneumoniae isolates with a mucoid phenotype. To our knowledge, this is the first report of K. pneumoniae colonies with different phenotypes being isolated from the same sample. In addition, we show that virulence varies with colony phenotype. Dissemination of K. pneumoniae isolates expressing both antibiotic resistance and high virulence would constitute a great threat.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Klebsiella pneumoniae/genetics , Virulence Factors/genetics , beta-Lactamases/genetics , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Capsules/genetics , Bacterial Proteins , Biofilms , Colistin/pharmacology , Drosophila melanogaster/microbiology , Fosfomycin/pharmacology , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Genotype , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/pathogenicity , Microbial Sensitivity Tests , Minocycline/analogs & derivatives , Minocycline/pharmacology , Phenotype , Serotyping , Survival Rate , Tigecycline , Virulence
8.
PLoS Biol ; 16(6): e2004929, 2018 06.
Article in English | MEDLINE | ID: mdl-29883446

ABSTRACT

Animal locomotion is mediated by a sensory system referred to as proprioception. Defects in the proprioceptive coordination of locomotion result in uncontrolled and inefficient movements. However, the molecular mechanisms underlying proprioception are not fully understood. Here, we identify two transient receptor potential cation (TRPC) channels, trp-1 and trp-2, as necessary and sufficient for proprioceptive responses in C. elegans head steering locomotion. Both channels are expressed in the SMDD neurons, which are required and sufficient for head bending, and mediate coordinated head steering by sensing mechanical stretches due to the contraction of head muscle and orchestrating dorsal head muscle contractions. Moreover, the SMDD neurons play dual roles to sense muscle stretch as well as to control muscle contractions. These results demonstrate that distinct locomotion patterns require dynamic and homeostatic modulation of feedback signals between neurons and muscles.


Subject(s)
Caenorhabditis elegans/physiology , Mechanoreceptors/physiology , Motor Neurons/physiology , Proprioception/physiology , Sensory Receptor Cells/physiology , TRPC Cation Channels/physiology , Animals , Caenorhabditis elegans/genetics , Locomotion/physiology , TRPC Cation Channels/genetics
9.
Mol Cells ; 40(10): 787-795, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29081083

ABSTRACT

Avoiding ingestion of excessively salty food is essential for cation homeostasis that underlies various physiological processes in organisms. The molecular and cellular basis of the aversive salt taste, however, remains elusive. Through a behavioral reverse genetic screening, we discover that feeding suppression by Na+-rich food requires Ionotropic Receptor 76b (Ir76b) in Drosophila labellar gustatory receptor neurons (GRNs). Concentrated sodium solutions with various anions caused feeding suppression dependent on Ir76b. Feeding aversion to caffeine and high concentrations of divalent cations and sorbitol was unimpaired in Ir76b-deficient animals, indicating sensory specificity of Ir76b-dependent Na+ detection and the irrelevance of hyperosmolarity-driven mechanosensation to Ir76b-mediated feeding aversion. Ir76b-dependent Na+-sensing GRNs in both L- and s-bristles are required for repulsion as opposed to the previous report where the L-bristle GRNs direct only low-Na+ attraction. Our work extends the physiological implications of Ir76b from low-Na+ attraction to high-Na+ aversion, prompting further investigation of the physiological mechanisms that modulate two competing components of Na+-evoked gustation coded in heterogeneous Ir76b-positive GRNs.


Subject(s)
Drosophila Proteins/genetics , Neurons/drug effects , Receptors, Cell Surface/genetics , Receptors, Ionotropic Glutamate/genetics , Sodium Channels/genetics , Taste/genetics , Animals , Behavior, Animal/drug effects , Caffeine/administration & dosage , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Neurons/physiology , Salts/administration & dosage
10.
Exp Mol Med ; 49(7): e354, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28706298

ABSTRACT

Previously, we have reported that CKAP2 is involved in the maintenance of centrosome integrity, thus allowing for proper mitosis in primary hepatocytes. To understand this biological process, we identified the mitosis-specific phosphorylation sites in mouse CKAP2 and investigated CKAP's possible role in cell cycle progression. Because we observed mouse CKAP2 depletion in amplified centrosomes and aberrant chromosomal segregation, which was rescued by ectopic expression of wild-type CKAP2, we focused on the centrosome duplication process among the various aspects of the cell cycle. Among the identified phosphorylation sites, T603 and possibly S608 were phosphorylated by CDK1-cyclin B1 during mitosis, and the ectopic expression of both T603A and S608A mutants was unable to restore the centrosomal abnormalities in CKAP2-depleted cells. These results indicated that the phosphorylation status of CKAP2 during mitosis is critical for controlling both centrosome biogenesis and bipolar spindle formation.


Subject(s)
CDC2 Protein Kinase/metabolism , Centrosome/metabolism , Cyclin B/metabolism , Cytoskeletal Proteins/metabolism , Mitosis , Animals , Cell Cycle , Chromosome Segregation , Cytoskeletal Proteins/genetics , DNA, Complementary/genetics , HEK293 Cells , Humans , Mice , Mutation , NIH 3T3 Cells , Phosphorylation
11.
Environ Pollut ; 222: 182-190, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28104346

ABSTRACT

We performed toxicological study of mice exposed to lead by quantifying fatty acids in brain of the mice. This study suggests that the introduced analytical method had an extremely high tolerance against impurities such as water and extractives; thus, it led to the enhanced resolution in visualizing the spectrum of fatty acid profiles in animal brain. Furthermore, one of the biggest technical advantages achieved in this study was the quantitation of fatty acid methyl ester profiles of mouse brain using a trace amount of sample (e.g., 100 µL mixture). Methanol was screened as the most effective extraction solvent for mouse brain. The behavioral test of the mice before and after lead exposure was conducted to see the effect of lead exposure on fatty acid composition of the mice' brain. The lead exposure led to changes in disease-related behavior of the mice. Also, the lead exposure induced significant alterations of fatty acid profile (C16:0, C 18:0, and C 18:1) in brain of the mice, implicated in pathology of psychiatric diseases. The alteration of fatty acid profile of brain of the mice suggests that the derivatizing technique can be applicable to most research fields associated with the environmental neurotoxins with better resolution in a short time, as compared to the current protocols for lipid analysis.


Subject(s)
Brain/drug effects , Brain/metabolism , Fatty Acids/metabolism , Lead/metabolism , Lead/toxicity , Animals , Behavior, Animal/drug effects , Biological Availability , Catalysis , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Esterification , Fatty Acids/analysis , Fatty Acids/chemistry , Lipid Metabolism/drug effects , Methanol , Mice , Mice, Inbred C57BL
12.
Elife ; 52016 09 22.
Article in English | MEDLINE | ID: mdl-27656903

ABSTRACT

Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/physiology , Drosophila/radiation effects , TRPC Cation Channels/metabolism , Animals , Feeding Behavior/radiation effects , Free Radicals/metabolism , Ion Channels , Sunlight , TRPA1 Cation Channel
13.
Front Cell Neurosci ; 10: 181, 2016.
Article in English | MEDLINE | ID: mdl-27486388

ABSTRACT

The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron (GRN) projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal GRNs are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal GRNs, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of GRNs in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal GRNs have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food.

14.
Int J Med Sci ; 13(8): 562-8, 2016.
Article in English | MEDLINE | ID: mdl-27499688

ABSTRACT

Background. Total laparoscopic hysterectomy (TLH) causes various types of postoperative pain, and the pain pattern has not been evaluated in detail to date. This prospective observational study investigated the types of postoperative pain, intensity in the course of time, and pain characteristics during the first postoperative 72 hr after TLH. Methods. Sixty four female patients undergoing TLH were enrolled, which finally 50 patients were included for the data analyses. The locations of pain included overall pain, abdominal visceral and incisional pains, shoulder pain, and perineal pain. Assessments were made at rest and in motion, and pain level was scored with the use of the 100 mm visual analog scale. The pain was assessed at baseline, and at postoperative 30 min, 1 hr, 3 hr, 6 hr, 24 hr, 48 hr, and 72 hr. Results. Overall, visceral, and incisional pains were most intense on the day of operation and then decreased following surgery. In contrast, shoulder pain gradually increased, peaking at postoperative 24 hr. Shoulder pain developed in 90% of all patients (44/50). It was not more aggravated in motion than at rest, in comparison with other pains, and right shoulder pain was more severe than left shoulder pain (p=0.006). In addition, the preoperative exercise habit of patients increased the threshold of shoulder pain. Most patients (46/50) had perineal pain, which was more severe than abdominal pain in approximately 30% of patients (17/50). Conclusion. Pain after TLH showed considerably different duration, severity, and characteristics, compared with other laparoscopic procedures. Shoulder pain was most intense at postoperative 24 hr, and the intensity was associated with the prior exercise habit of patients and the high level of analgesic request.


Subject(s)
Hysterectomy/adverse effects , Laparoscopy/adverse effects , Pain Measurement , Pain, Postoperative/physiopathology , Adult , Aged , Analgesics/administration & dosage , Female , Humans , Male , Middle Aged , Pain, Postoperative/etiology , Shoulder Pain
15.
PLoS One ; 11(7): e0158707, 2016.
Article in English | MEDLINE | ID: mdl-27380411

ABSTRACT

A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a complex with Kir2.1 during myogenic differentiation, and is required for the channel activity by enhancing the surface expression of Kir2.1 in the early stage of differentiation. The expression of a constitutively active form of the upstream kinase for p38MAPK, MKK6(EE) can restore Kir2.1 activities in Cdo-depleted C2C12 cells, while the treatment with a p38MAPK inhibitor, SB203580 exhibits a similar effect of Cdo depletion on Kir2.1 surface expression. Furthermore, Cdo-/- primary myoblasts, which display a defective differentiation program, exhibit a defective Kir2.1 activity. Taken together, our results suggest that a promyogenic Cdo signaling is critical for Kir2.1 activities in the induction of myogenic differentiation.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Differentiation , Myoblasts/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Animals , Blotting, Western , Cell Adhesion Molecules/genetics , Cell Line , Cell Membrane/metabolism , Cells, Cultured , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , MAP Kinase Kinase 6/metabolism , Mice, Knockout , Microscopy, Confocal , Myoblasts/cytology , Potassium Channels, Inwardly Rectifying/genetics , Protein Binding , Pyridines/pharmacology , RNA Interference , Signal Transduction , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
16.
PLoS One ; 11(7): e0158639, 2016.
Article in English | MEDLINE | ID: mdl-27391353

ABSTRACT

Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs) immortalized by the human telomerase reverse transcriptase (hTERT) gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM) cells were injected into adult (4-6-week-old) Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1-2-week-old) NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL) were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL), they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases.


Subject(s)
Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Telomerase/metabolism , Adult , Animals , Carcinogenesis/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Humans , Immunohistochemistry , Karyotype , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Reverse Transcriptase Polymerase Chain Reaction , Telomerase/genetics , Telomere/genetics , Young Adult
17.
Elife ; 52016 07 28.
Article in English | MEDLINE | ID: mdl-27466704

ABSTRACT

KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca(2+)/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures.


Subject(s)
Arginine/metabolism , Epilepsy/physiopathology , KCNQ Potassium Channels/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/metabolism , Animals , Disease Models, Animal , Methylation , Mice, Inbred C57BL , Protein Binding
19.
Data Brief ; 6: 732-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26870758

ABSTRACT

As a further elaboration of the recently devised Q10 scanning analysis ("Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude" [1]), the interval between current data points at two temperatures was shortened and the resulting parameters representing thermal sensitivities such as peak Q10s and temperature points of major thermosensitivity events are presented for two TRPA1 orthologues from rattlesnakes and boas. In addition, the slope factors from Boltzmann fitting and the change of molar heat capacity of temperature-evoked currents were evaluated and compared as alternative ways of thermal sensitivity appraisal of TRPA1 orthologues.

20.
Chem Res Toxicol ; 29(3): 367-79, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26914252

ABSTRACT

The Y-family DNA polymerase REV1 is involved in replicative bypass of damaged DNA and G-quadruplex (G4) DNA. In addition to a scaffolding role in the replicative bypass, REV1 acts in a catalytic role as a deoxycytidyl transferase opposite some replication stall sites, e.g., apurinic/apyrimidinic (AP) sites, N(2)-guanyl lesions, and G4 sites. We characterized the biochemical properties of 12 reported germline missense variants of human REV1, including the N373S variant associated with high risk of cervical cancer, using the recombinant REV1 (residues 330-833) proteins and DNA templates containing a G, AP site, N(2)-CH2(2-naphthyl)G (N(2)-NaphG), or G4. In steady-state kinetic analyses, the F427L, R434Q, M656V, D700N, R704Q, and P831L variants displayed 2- to 8-fold decreases in kcat/Km for dCTP insertion opposite all four templates, compared to that of wild-type, while the N373S, M407L, and N497S showed 2- to 3-fold increases with all four and the former three or two templates, respectively. The F427L, R434Q, M656V, and R704Q variants also had 2- to 3-fold lower binding affinities to DNA substrates containing G, an AP site, and/or N(2)-NaphG than wild-type. Distinctively, the N373S variant had a 3-fold higher binding affinity to G4 DNA than the wild-type, as well as a 2-fold higher catalytic activity opposite the first tetrad G, suggesting a facilitating effect of this variation on replication of G4 DNA sequences in certain human papillomavirus genomes. Our results suggest that the catalytic function of REV1 is moderately or slightly altered by at least nine genetic variations, and the G4 DNA processing function of REV1 is slightly enhanced by the N373S variation, which might provide the possibility that certain germline missense REV1 variations affect the individual susceptibility to carcinogenesis by modifying the capability of REV1 for replicative bypass past DNA lesions and G4 motifs derived from chemical and viral carcinogens.


Subject(s)
DNA Damage , DNA/chemistry , DNA/metabolism , G-Quadruplexes , Germ-Line Mutation/genetics , Mutation, Missense/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , DNA Adducts/chemistry , Humans , Models, Molecular , Nuclear Proteins/chemistry , Nucleotidyltransferases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...