Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(30): 27004-27010, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31276358

ABSTRACT

In this study, reduced graphene oxide (rGO) and graphene oxide nanoribbons (GONRs) are used to fabricate a composite membrane that exhibits ultrafast water permeance (312.8 L m-2 h-1 bar-1) and precise molecular separation (molecular weight cutoff: 269 Da), which surpass the upper bound of previously reported polymer and graphene-based nanofiltration membranes. As two-dimensional GONR exhibits a width on the scale of nanometers, its nanochannels can be enlarged without hindering the stacking of rGO. Moreover, abundant oxygen-containing groups on the edge and surface of GONR enhance the electrostatic interactions between the filtered molecules and the membrane nanochannel. By the synergistic effect, rejection and water flux are considerably increased. Owing to the chemically stable nature of rGO, the composite membrane is highly stable in aqueous media (from acidic to alkaline) and is recyclable during repeated filtration tests.

2.
Sci Rep ; 8(1): 1959, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386637

ABSTRACT

Among the various factors required for membranes in organic solvent separations, the stability of membrane supports is critical in the preparation of membranes with universal chemical stability, mechanical flexibility, and high flux. In this study, nanoporous freestanding carbon nanotube (CNT) films were fabricated and utilized as supports for enhanced permeation in organic solvents. The excellent chemical stability of the CNT support allowed it to withstand various organic solvents such as toluene, acetone, and dimethylformamide. In addition, the structural stability and high pore density of CNT supports allowed the deposition of an ultrathin selective layer for an enhanced-flux membrane. Membrane performance was demonstrated by depositing a thin graphene oxide (GO) layer on the CNT support; GO was selected because of its high chemical stability. CNT-supported GO membranes effectively blocked molecules with molecular weight larger than ~800 g mol-1 while allowing the fast permeation of small molecules such as naphthalene (permeation was 50 times faster than that through thick GO membranes) and maintaining selective permeation in harsh solvents even after 72 hours of operation. We believe that the developed CNT support can provide fundamental insights in utilizing selective materials toward organic solvent membranes.

3.
Nanoscale ; 9(48): 19114-19123, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29184962

ABSTRACT

Herein, a new carbon-based graphitic membrane composed of laminated graphitic nanoribbons with a nanometer-scale width and micrometer-scale length, the graphitic nanoribbon membrane, is reported. Compared to the existing graphitic membranes, such as those composed of graphene oxide and carbon nanotubes, the developed membrane exhibits several unique characteristics in pressure-driven systems. First, the short diffusion length through its interlayer and the free volume of its stacked nanoribbons result in high solvent flux regardless of solvent polarity (water: 25-250 L m-2 h-1 bar-1; toluene: ∼975 L m-2 h-1 bar-1; hexane: ∼240 L m-2 h-1 bar-1). The flux value for water is one order of magnitude higher, while that for nonpolar organic solvents is two to three orders of magnitude greater than the corresponding flux values obtained through commercially available nanofiltration membranes. Second, the membrane exhibits good separation performance, particularly with organic dye molecules (∼100%) and trivalent ions (∼60%), maintaining high solvent flux during extended filtration. Finally, the membrane exhibits high stability in various fluids, e.g., 1 M HCl solution, 1 M NaOH solution, toluene, ethanol, and water, as well as under hydraulic pressures of up to 50 bar. Electron microscopy observation and simulation results suggest that such distinctive features of the membrane are related to the entangled thin multilayers of the graphitic nanoribbons, which possibly originate from the high aspect ratio and narrow width of the nanoribbons.

4.
ACS Appl Mater Interfaces ; 9(51): 44687-44694, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29098847

ABSTRACT

In this work, we prepared 90 nm thick Ti3C2Tx-graphene oxide (GO) membranes laminated on a porous support by mixing GO with Ti3C2Tx. This process was chosen to prevent the penetration of target molecules through inter-edge defects or voids with poor packing. The lattice period of the prepared membrane was 14.28 Å, as being swelled with water, resulting in an effective interlayer spacing of around 5 Å, which corresponds to two layers of water molecules. The composite membranes effectively rejected dye molecules with hydrated radii above 5 Å, as well as positively charged dye molecules, during pressure-driven filtration at 5 bar. Rejection rates were 68% for methyl red, 99.5% for methylene blue, 93.5% for rose Bengal, and 100% for brilliant blue (hydrated radii of 4.87, 5.04, 5.88, and 7.98 Å, respectively). Additionally, the rejections of composite membrane were compared with GO membrane and Ti3C2Tx membrane.

5.
ACS Appl Mater Interfaces ; 8(40): 27376-27382, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27669330

ABSTRACT

Laminated graphene oxide (GO) has promising use as a membrane because of its high permeance, chemical and mechanical stability, as well as the molecular sieving effect of its interlayers. However, the hydrophilic surface of GO, which is highly decorated with oxygen groups, easily induces delamination of stacked GO films in aqueous media, thereby limiting the practical application. To stabilize GO films in aqueous media, we functionalized a polymer support with branched polyethylene-imine (BPEI). BPEI adsorbed intercalated into the stacked GO sheets via diffusion during filtration. The GO/BPEI membrane obtained exhibits high stability during sonication (>1 h duration, 40 kHz frequency) in water within a broad pH range (2-12). In contrast, the GO film spontaneously delaminated upon sonication. Furthermore, BPEI treatment did not affect the filtration performance of the GO film, as evidenced by the high rejection rates (>90%) for the dye molecules methylene blue, rose bengal, and brilliant blue and by their permeation rates of ca. 124, 34.8, 12.2, and 5.1%, respectively, relative to those of a typical GO membrane.

SELECTION OF CITATIONS
SEARCH DETAIL
...