Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell J ; 24(11): 665-672, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36377216

ABSTRACT

OBJECTIVE: Reportedly, long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) is involved in regulating colorectal cancer (CRC) progression. However, the function and detailed downstream mechanism of CASC2 in CRC progression are not fully elucidated. The aim of the study was to investigate the potential function and molecular mechanism of CASC2 in CRC progression. MATERIALS AND METHODS: In this experimental study, quantitative real-time polymerase chain reaction (qRT-PCR) was adopted to probe CASC2, microRNA-18a-5p (miR-18a-5p) and B cell translocation gene 3 (BTG3) mRNA expression in CRC tissues and cell lines. After CASC2 was overexpressed in Colo-678 and HCT116 cell lines, methylthiazol tetrazolium (MTT) and 5-bromo-2'-deoxyuridine (BrdU) assays were employed to examine the proliferation of CRC cells. Transwell migration and invasion assays were executed to evaluate the metastatic potential of CRC cells. The targeting relationships among CASC2, miR-18a-5p and BTG3 were validated by dual luciferase reporter gene assay. Western blot assay was applied to examine the regulatory effects of CASC2 and miR-18a-5p on BTG3 protein expression. RESULTS: CASC2 was decreased in CRC tissues and cell lines, and its low expression in CRC tissues was associated with larger tumor size and lymph node metastasis. CASC2 overexpression restrained proliferative, migrative and invasive capabilities of CRC cells. CASC2 could function as a molecular sponge for miR-18a-5p and repress the expression of miR-18a-5p. Furthermore, the inhibitory effects of CASC2 on the malignant phenotypes of CRC cells was counteracted by miR-18a-5p mimics. Additionally, CASC2 could positively regulate BTG3 expression via suppressing miR-18a-5p. CONCLUSION: CASC2 inhibits CRC development by suppressing miR-18a-5p and raising BTG3 expression.

2.
J Mol Histol ; 52(6): 1215-1224, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34623552

ABSTRACT

Tight junction proteins play crucial roles in maintaining the integrity of intestinal mucosal barrier. MiRNA-182-5p is capable of targeting claudin-2 which is one of the vital tight junction proteins and the effect and mechanism of miRNA-182-5p was explored here in the DSS-induced colitis model. The pathological conditions were evaluated via hematoxylin and eosin staining. The gene expression level was assessed via PCR. Quantitative immunohistochemistry analysis was performed for the measurement of claudin-2. microRNA.org online tool was used for target gene prediction. Luciferase reporter assay and RNA pull-down assay were performed to detect the target of miRNA-182-5p. The inflammatory and oxidative stress level were measured using corresponding kits. MiRNA-182-5p was highly expressed in colitis model and miRNA-182-5p inhibitor exerted protective effects on colitis induced by DSS in mice. The protective effects includded improvement of pathological changes, increases in anti-inflammation and anti-oxidative genes, and up-regulation of TGF-ß1. Claudin-2 mRNA was predicted as the target of miRNA-182-5p, which was validated via luciferase reporter assay and RNA pull-down assay. Claudin-2 overexpression was found in miRNA-182-5p inhibitor group. Consistent with the role of miRNA-182-5p, claudin-2 overexpression also exerted protective effects on DSS-induced colitis in mice. Inhibition of miRNA-182-5p exerted protective effects on colitis via targeting and upregulating claudin-2. The findings in study provide a new therapeutic strategy for colitis treatment and lay the foundation for future study.


Subject(s)
Claudin-2/genetics , Colitis, Ulcerative/etiology , Colitis, Ulcerative/pathology , Gene Expression Regulation , MicroRNAs/genetics , RNA Interference , 3' Untranslated Regions , Animals , Colitis, Ulcerative/metabolism , Cytokines/metabolism , Disease Models, Animal , Immunohistochemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Oxidation-Reduction , Oxidative Stress
3.
Onco Targets Ther ; 13: 6315-6327, 2020.
Article in English | MEDLINE | ID: mdl-32636650

ABSTRACT

BACKGROUND: The aberrant expression of circular RNAs (circRNAs) has been identified as a novel trait of cancers. However, the role of circRNAs in colorectal cancer (CRC) remains to be elucidated. METHODS: Informatic analysis was performed to identify circRNAs in CRC tissues and adjacent tissues. Gain- and loss-of-function experiments were constructed to analyze hsa_circ_001806 roles in CRC cell stemness by sphere-formation, ALDH activity, stemness marker expression and tumor-initiating ability assays. CCK8 cell viability was carried out to evaluate hsa_circ_0001806 roles in CRC cell viability. Luciferase reporter and pull-down assays were used to reveal the underlying mechanisms. RESULTS: Hsa_circ_0001806 was significantly upregulated in CRC tissues and correlated with TNM stage, depth of invasion, lymphatic metastasis and distant metastasis. Hsa_circ_0001806 promoted the stemness of CRC cells, as evident by increasing sphere-formation ability, ALDH1 activity and stemness marker expression while had no effect on cell viability. Mechanistically, the same miR-193-5p-binding sites are shared between hsa_circ_0001806 and COL1A1. Hsa_circ_0001806 upregulates COL1A1 expression in a miR-193-5p-dependent manner, which is essential for hsa_circ_0001806-mediated regulation on CRC cell stemness. CONCLUSION: CircRNA hsa_circ_0001806 may act as a promising therapeutic target by facilitating the stemness of CRC cells via activating the hsa_circ_0001806/miR-193a-5p/COL1A1 axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...