Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 3(2): 370-382, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33796816

ABSTRACT

The shape of drug delivery vehicles impacts both the circulation time and the effectiveness of the vehicle. Peptide-based drug amphiphiles (DAs) are promising new candidates as drug delivery vehicles that can self-assemble into shapes such as nanofilament and nanotube (diameter ~ 6-10 nm). The number of conjugated drugs affects the IC50 of these DAs, which is correlated to the effective cellular uptake. Characterizing and optimizing the interaction of these DAs and their assemblies with the cellular membrane is experimentally challenging. Long-time molecular dynamics can determine if the DA molecular structure affects the translocation across and interaction with the cellular membrane. Here, we report long-time atomistic simulation on Anton 2 (up to 25 µs) of these DAs with model cellular membranes. Results indicate that the interaction of these DAs with model cellular membranes is dependent on the number of conjugated drugs. We find that, with increased drug loading, the hydrophobic drug (camptothecin) builds up in the outer hydrophobic core of the membrane, pulling in positively charged peptide groups. Next, we computationally probe the interaction of differing shapes of these model drug delivery vehicles-nanofilament and nanotube-with the same model membranes, finding that the interaction of these nanostructures with the membrane is strongly repulsive. Results suggest that the hydrogen bond density between the nanostructure and the membrane may play a key role in modulating the interaction between the nanostructure and the membrane. Taken together, these results offer important insights for the rational design of peptide-based drug delivery vehicles.

2.
J Chem Theory Comput ; 17(5): 2964-2990, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33878263

ABSTRACT

A new classical nonpolarizable force field, KBFF20, for the simulation of peptides and proteins is presented. The force field relies heavily on the use of Kirkwood-Buff theory to provide a comparison of simulated and experimental Kirkwood-Buff integrals for solutes containing the functional groups common in proteins, thus ensuring intermolecular interactions that provide a good balance between the peptide-peptide, peptide-solvent, and solvent-solvent distributions observed in solution mixtures. In this way, it differs significantly from other biomolecular force fields. Further development and testing of the intermolecular potentials are presented here. Subsequently, rotational potentials for the ϕ/ψ and χ dihedral degrees of freedom are obtained by analysis of the Protein Data Bank, followed by small modifications to provide a reasonable balance between simulated and observed α and ß percentages for small peptides. This, the first of two articles, describes in detail the philosophy and development behind KBFF20.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Databases, Protein , Molecular Dynamics Simulation , Thermodynamics
3.
J Chem Theory Comput ; 16(5): 3373-3384, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32126167

ABSTRACT

Accurate and efficient prediction of drug partitioning in model membranes is of significant interest to the pharmaceutical industry. Herein, we utilize advanced sampling methods, specifically, the adaptive biasing force methodology to calculate the potential of mean force for a model hydrophobic anticancer drug, camptothecin (CPT), across three model interfaces. We consider an octanol bilayer, a thick octanol/water interface, and a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/water interface. We characterize the enthalpic and entropic contributions of the drug to the potential of mean force. We show that the rotational entropy of the drug is inversely related to the probability of hydrogen bond formation of the drug with the POPC membrane. In addition, in long-time microsecond simulations of a high concentration of CPT above the POPC membrane, we show that strong drug-drug aromatic interactions shift the spatial orientation of the drug with the membrane. Stacks of hydrophobic drugs form, allowing penetration of the drug just under the POPC head groups. These results imply that inhomogeneous membrane models need to take into account the effect of drug aggregation on the membrane environment.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Camptothecin/chemistry , Cell Membrane/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/pharmacology , Cell Membrane/drug effects , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Models, Molecular , Phosphatidylcholines/chemistry
4.
J Phys Chem B ; 123(50): 10582-10593, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31749360

ABSTRACT

Peptide self-assembly has been used to design an array of nanostructures that possess functional biomedical applications. Experimental studies have reported nanofilament and nanotube formation from peptide-based drug amphiphiles (DAs). These DAs have shown to possess an inherently high drug loading with a tunable release mechanism. Herein, we report rational coarse-grained molecular dynamics simulations of the self-assembly process and the structure and stability of preassembled nanotubes at longer timescales (µs). We find that aggregation between these DAs at the submicrosecond timescale is driven by directional aromatic interactions between the drugs. The drugs form a large and high-density nucleus that is stable throughout microsecond timescales. Simulations of nanotubes characterize the drug-drug stacking and find correlations at nanometer length scales. These simulations can inform the rational molecular design of drug amphiphiles.


Subject(s)
Antineoplastic Agents/chemistry , Molecular Dynamics Simulation , Nanotubes/chemistry , Drug Design , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Peptides/chemistry
5.
J Phys Chem B ; 122(50): 11827-11840, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30477297

ABSTRACT

The nucleosome core particle (NCP) is the basic packaging unit of DNA. Recently reported structures of the NCP suggest that the histone octamer undergoes conformational changes during the process of DNA translocation around the histone octamer. Herein, we demonstrate with long-time all-atomistic molecular dynamics simulations that the histone tails play a critical role in this nucleosome repositioning. We simulate the NCP at high salt concentrations, an order of magnitude higher than physiological conditions, to screen the electrostatic interactions. We find that the positively charged H2B tail collapses and complexes with the minor groove of nucleosomal DNA. Upon collapse of the tail, counterions are released. This promotes the formation of a ∼10 bp loop of nucleosomal DNA. The complexation of the tail increases the local flexibility of the DNA, as characterized by local force constants. Using normal mode analysis, we identify a "wave-like motion" of nucleosomal DNA. We perform umbrella sampling to characterize two possible pathways of the initial stages of unwrapping, symmetric and asymmetric. These results suggest that regulation of the histone tail interactions with nucleosomal DNA may play a critical role in nucleosomal dynamics by acting as a switch to determine the initial pathway of unwrapping.


Subject(s)
DNA/chemistry , Histones/chemistry , Molecular Dynamics Simulation , Nucleosomes/chemistry
6.
J Chem Inf Model ; 58(6): 1164-1168, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29856610

ABSTRACT

We report here on long-time all-atomistic molecular dynamics simulations of functional supramolecular nanotubes composed by the self-assembly of peptide-drug amphiphiles (DAs). These DAs have been shown to possess an inherently high drug loading of the hydrophobic anticancer drug camptothecin. We probe the self-assembly mechanism from random with ∼0.4 µs molecular dynamics simulations. Furthermore, we also computationally characterize the interfacial structure, directionality of π-π stacking, and water dynamics within several peptide-drug nanotubes with diameters consistent with the reported experimental nanotube diameter. Insight gained should inform the future design of these novel anticancer drug delivery systems.


Subject(s)
Antineoplastic Agents/administration & dosage , Camptothecin/administration & dosage , Drug Carriers/chemistry , Molecular Dynamics Simulation , Nanotubes/chemistry , Surface-Active Agents/chemistry , Antineoplastic Agents/chemistry , Camptothecin/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Nanotubes/ultrastructure , Peptides/chemistry , Water/chemistry
7.
J Phys Chem B ; 122(23): 6164-6178, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29768004

ABSTRACT

At the molecular level, the dynamic instability (random growth and shrinkage) of the microtubule (MT) is driven by the nucleotide state (GTP vs GDP) in the ß subunit of the tubulin dimers at the MT cap. Here, we use large-scale molecular dynamics (MD) simulations and normal-mode analysis (NMA) to characterize the effect of a single GTP cap layer on tubulin octamers composed of two neighboring protofilaments (PFs). We utilize recently reported high-resolution structures of dynamic MTs to simulate a GDP octamer both with and without a single GTP cap layer. We perform multiple replicas of long-time atomistic MD simulations (3 replicas, 0.3 µs for each replica, 0.9 µs for each octamer system, and 1.8 µs total) of both octamers. We observe that a single GTP cap layer induces structural differences in neighboring PFs, finding that one PF possesses a gradual curvature, compared to the second PF which possesses a kinked conformation. This results in either curling or splaying between these PFs. We suggest that this is due to asymmetric strengths of longitudinal contacts between the two PFs. Furthermore, using NMA, we calculate mechanical properties of these octamer systems and find that octamer system with a single GTP cap layer possesses a lower flexural rigidity.


Subject(s)
Guanosine Diphosphate/chemistry , Guanosine Triphosphate/chemistry , Microtubules/chemistry , Tubulin/chemistry , Dimerization , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Molecular Dynamics Simulation , Protein Conformation , Tubulin/metabolism
8.
Biomater Sci ; 6(1): 216-224, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29214247

ABSTRACT

Supramolecular filament hydrogels are an emerging class of biomaterials that hold great promise for regenerative medicine, tissue engineering, and drug delivery. However, fine-tuning of their bulk mechanical properties at the molecular level without altering their network structures remains a significant challenge. Here we report an isomeric strategy to construct amphiphilic peptides through the conjugation of isomeric hydrocarbons to influence the local viscoelastic properties of their resulting supramolecular hydrogels. In this case, the packing requirements of the chosen isomeric hydrocarbons within the supramolecular filaments are dictated by their atomic arrangements at the molecular and intermolecular levels. Atomistic molecular dynamics simulations suggest that this design strategy can subtly alter the molecular packing at the interface between the peptide domain and the hydrophobic core of the supramolecular assemblies, without changing both the filament width and morphology. Our results from wide-angle X-ray scattering and molecular simulations further confirm that alterations to the intermolecular packing at the interface impact the strength and degree of hydrogen bonding within the peptide domains. This subtle difference in the isomeric hydrocarbon design and their consequent packing difference led to variations in the persistence length of the individual supramolecular filaments. Microrheological analysis reveals that this difference in filament stiffness enables the fine-tuning of the mechanical properties of the hydrogel at the macroscopic scale. We believe that this isomeric platform provides an innovative method to tune the local viscoelastic properties of supramolecular polymeric hydrogels without necessarily altering their network structures.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Peptides/chemistry , Drug Delivery Systems/methods , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Tissue Engineering
9.
Soft Matter ; 13(42): 7721-7730, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28905963

ABSTRACT

Peptide-based supramolecular filaments, in particular filaments self-assembled by drug amphiphiles (DAs), possess great potential in the field of drug delivery. These filaments possess one hundred percent drug loading, with a release mechanism that can be tuned based on the dissociation of the supramolecular filaments and the degradation of the DAs [Cheetham et al., J. Am. Chem. Soc., 2013, 135(8), 2907]. Recently, much attention has been drawn to the competing intermolecular interactions that drive the self-assembly of peptide-based amphiphiles into supramolecular filaments. Recently, we reported on long-time atomistic molecular dynamics simulations to characterize the structure and growth of chiral filaments by the self-assembly of a DA containing the aromatic anti-cancer drug camptothecin [Kang et al., Macromolecules, 2016, 49(3), 994]. We found that the π-π stacking of the aromatic drug governs the early stages of the self-assembly process, while also contributing towards the chirality of the self-assembled filament. Based on these all-atomistic simulations, we now build a chemically accurate coarse-grained model that can capture the structure and stability of these supramolecular filaments at long time-scales (microseconds). These coarse-grained models successfully recapitulate the growth of the molecular clusters (and their elongation trends) compared with previously reported atomistic simulations. Furthermore, the interfacial structure and the helicity of the filaments are conserved. Next, we focus on characterization of the disassembly process of a 0.675 µm DA filament at microsecond time-scales. These results provide very useful tools for the rational design of functional supramolecular filaments, in particular supramolecular filaments for drug delivery applications.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Peptides/chemistry , Pharmaceutical Preparations/chemistry , Amino Acid Sequence , Protein Stability , Protein Structure, Secondary
10.
Org Biomol Chem ; 15(38): 7993-8005, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28853474

ABSTRACT

This review describes recent progress in the area of molecular simulations of peptide assemblies, including peptide-amphiphiles and drug-amphiphiles. The ability to predict the structure and stability of peptide self-assemblies from the molecular level up is vital to the field of nanobiotechnology. Computational methods such as molecular dynamics offer the opportunity to characterize intermolecular forces between peptide-amphiphiles that are critical to the self-assembly process. Furthermore, these computational methods provide the ability to computationally probe the structure of these supramolecular assemblies at the molecular level, which is a challenge experimentally. Herein, we briefly highlight progress in the areas of all-atomistic and coarse-grained simulation studies investigating the self-assembly process of short peptides and peptide amphiphiles. We also discuss recent all-atomistic and coarse-grained simulations of the self-assembly of a drug-amphiphile into elongated filaments. Next, we discuss how these computational methods can provide further insight into the pathway of cylindrical nanofiber formation and predict their biocompatibility by studying the interaction of these peptide-amphiphile nanostructures with model cell membranes.


Subject(s)
Computer Simulation , Models, Chemical , Peptides/chemistry , Models, Molecular
11.
Macromolecules ; 49(3): 994-1001, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-30792552

ABSTRACT

While a great diversity of peptide-based supra-molecular filaments have been reported, the impact of an auxiliary segment on the chiral assembly of peptides remains poorly understood. Herein we report on the formation of chiral filaments by the self-assembly of a peptide-drug conjugate containing an aromatic drug camptothecin (CPT) in a computational study. We find that the chirality of the filament is mediated by the π‒π stacking between CPTs, not only by the well-expected intermolecular hydrogen bonding between peptide segments. Our simulations show that π‒π stacking of CPTs governs the early stages of the self-assembly process, while a hydrogen bonding network starts at a relatively later stage to contribute to the eventual morphology of the filament. Our results also show the possible presence of water within the core of the CPT filament. These results provide very useful guiding principles for the rational design of supramolecular assemblies of peptide conjugates with aromatic segments.

12.
J Phys Chem B ; 118(41): 11965-72, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25243601

ABSTRACT

We report here the interactions between a hydrophobic drug and a model cellular membrane at the molecular level using all-atom molecular dynamics simulations of paclitaxel, a hydrophobic cancer drug. The calculated free energy of a single drug across the bilayer interface displays a minimum in the outer hydrophobic zone of the membrane. The transfer free energy shows excellent agreement with reported experimental data. In two sets of long-time simulations of high concentrations of drug in the membrane (12 and 11 mol %), the drugs display substantial clustering and rotation with significant directional preference in their diffusion. The main taxane ring partitions in the outer hydrophobic zone, while the three phenyl rings prefer to be closer to the hydrophobic core of the membrane. The clustering of the drug molecules, order parameters of the lipid tails, and water penetration suggest that the fluidity and permeability of the membrane are affected by the concentration of drugs that it contains. Furthermore, at the high-concentration limit, the free energy minimum shifts closer to the hydrophobic core and the central barrier to cross the membrane decreases. Moreover, the transfer free energy change substantially increases, suggesting that increasing concentration facilitates drug partitioning into the membrane.


Subject(s)
Lipid Bilayers/chemistry , Paclitaxel/chemistry , Cell Membrane/chemistry , Diffusion , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Permeability , Phosphatidylcholines/chemistry , Rotation , Water/chemistry
13.
J Mol Recognit ; 27(9): 537-48, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25042708

ABSTRACT

Revealing the processes of ligand-protein associations deepens our understanding of molecular recognition and binding kinetics. Hydrogen bonds (H-bonds) play a crucial role in optimizing ligand-protein interactions and ligand specificity. In addition to the formation of stable H-bonds in the final bound state, the formation of transient H-bonds during binding processes contributes binding kinetics that define a ligand as a fast or slow binder, which also affects drug action. However, the effect of forming the transient H-bonds on the kinetic properties is little understood. Guided by results from coarse-grained Brownian dynamics simulations, we used classical molecular dynamics simulations in an implicit solvent model and accelerated molecular dynamics simulations in explicit waters to show that the position and distribution of the H-bond donor or acceptor of a drug result in switching intermolecular and intramolecular H-bond pairs during ligand recognition processes. We studied two major types of HIV-1 protease ligands: a fast binder, xk263, and a slow binder, ritonavir. The slow association rate in ritonavir can be attributed to increased flexibility of ritonavir, which yields multistep transitions and stepwise entering patterns and the formation and breaking of complex H-bond pairs during the binding process. This model suggests the importance of conversions of spatiotemporal H-bonds during the association of ligands and proteins, which helps in designing inhibitors with preferred binding kinetics.


Subject(s)
HIV Protease/chemistry , HIV Protease/metabolism , Humans , Hydrogen Bonding/drug effects , Kinetics , Ligands , Molecular Dynamics Simulation , Protein Binding/drug effects , Ritonavir/chemistry , Ritonavir/pharmacology , Solvents , Thermodynamics
14.
Sci Rep ; 3: 1639, 2013.
Article in English | MEDLINE | ID: mdl-23572190

ABSTRACT

Solving the crystal structure of Cbl(TKB) in complex with a pentapeptide, pYTPEP, revealed that the PEP region adopted a poly-L-proline type II (PPII) helix. An unnatural amino acid termed a proline-templated glutamic acid (ptE) that constrained both the backbone and sidechain to the bound conformation was synthesized and incorporated into the pYTPXP peptide. We estimated imposing structural constraints onto the backbone and sidechain of the peptide and preorganize it to the bound conformation in solution will yield nearly an order of magnitude improvement in activity. NMR studies confirmed that the ptE-containing peptide adopts the PPII conformation, however, competitive binding studies showed an order of magnitude loss of activity. Given the emphasis that is placed on imposing structural constraints, we provide an example to support the contrary. These results point to conformational flexibility at the interface, which have implications in the design of potent Cbl(TKB)-binding peptides.


Subject(s)
Models, Molecular , Molecular Conformation , Peptides/chemistry , Proto-Oncogene Proteins c-cbl/chemistry , Amino Acid Sequence , Binding Sites , Hydrogen Bonding , Kinetics , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/metabolism , Protein Binding , Proto-Oncogene Proteins c-cbl/metabolism
15.
J Phys Chem B ; 116(34): 10247-58, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22857521

ABSTRACT

Promiscuous proteins are commonly observed in biological systems, for example, in modular domains that recognize phosphopeptides during signal transduction. This promiscuous recognition is of fundamental interest in chemistry and biology but is challenging when designing phosphopeptides in silico for cell biology studies. To investigate promiscuous recognition and binding processes of phosphopeptides and the modular domain, we selected a domain essential in breast cancer-the breast-cancer-associated protein 1 (BRCA1) C-terminal (BRCT) repeats as our model system. We performed molecular dynamics simulations and detailed analyses of the dihedral space to study protein fluctuation and conformational changes with phosphopeptide binding. We also studied the association processes of phosphorylated and unphosphorylated peptides using Brownian dynamics with a coarse-grained model. We found that the BRCT domain is preorganized for phosphopeptide binding but has a moderate arrangement of side chains to form complexes with various types of phosphopeptides. Phosphopeptide binding restricts the system motion in general, while the nonpolar phosphopeptide becomes more flexible in the bound state. Our analysis found that the BRCT domain utilizes different mechanisms, usually termed lock and key, induced-fit, and population-shift/conformational-selection models, to recognize peptides with different features. Brownian dynamics simulations revealed that the charged phosphate group may not always accelerate peptide association processes, but it helps the phosphopeptide orient into binding pockets accurately and stabilizes the complex. This work provides insights into molecular recognition in the promiscuous protein system.


Subject(s)
BRCA1 Protein/chemistry , Phosphates/analysis , Phosphopeptides/chemistry , Entropy , Humans , Molecular Dynamics Simulation
16.
J Chem Theory Comput ; 7(10): 3438-46, 2011 Oct 11.
Article in English | MEDLINE | ID: mdl-26598172

ABSTRACT

Most biological processes are initiated or mediated by the association of ligands and proteins. This work studies multistep, ligand-protein association processes by Brownian dynamics simulations with coarse-grained models for HIV-1 protease (HIVp) and its neutral ligands. We report the average association times when the ligand concentration is 100 µM. The influence of crowding on the simulated binding time was also studied. HIVp has flexible loops that serve as a gate during the ligand binding processes. It is believed that the flaps are partially closed most of the time in its free state. To accelerate our simulations, we fixed a part of the HIVp and reparameterized our coarse-grained model, using atomistic molecular dynamics simulations, to reproduce the "gating" motions of HIVp. HIVp-ligand interactions changed the gating behavior of HIVp and helped ligands diffuse on HIVp surface to accelerate binding. The structural adjustment of the ligand toward its final stable state was the limiting step in the binding processes, which is highly system dependent. The intermolecular attraction between the ligands and crowder proteins contributes the most to the crowding effects. The results highlight broader implications in recognition pathways under more complex environment that considers molecular dynamics and conformational changes. This work brings insights into ligand-protein associations and is helpful in the design of targeted ligands.

17.
Int J Thermophys ; 31(4-5): 793-804, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20694045

ABSTRACT

A pairwise preferential interaction model (PPIM), based on Kirkwood-Buff integrals, is developed to quantify and characterize the interactions between some of the functional groups commonly observed in peptides. The existing experimental data are analyzed to determine the preferential interaction (PI) parameters for different amino acid and small peptide systems in aqueous solutions. The PIs between the different functional groups present in the peptides are then isolated and quantified by assuming simple pairwise additivity. The PPIM approach provides consistent estimates for the pair interactions between the same functional groups obtained from different solute molecules. Furthermore, these interactions appear to be chemically intuitive. It is argued that this type of approach can provide valuable information concerning specific functional group correlations which could give rise to peptide aggregation.

18.
ACS Nano ; 3(2): 462-6, 2009 Feb 24.
Article in English | MEDLINE | ID: mdl-19236086

ABSTRACT

The octameric porin MspA from Mycobacterium smegmatis is sufficiently stable to form a nonmembrane-supported stand-alone porin on mica surfaces. About 98% of all MspA octamers were found to stand upright on mica, with their periplasmic loop regions bound to the hydrophilic mica surface. Both, small (d = 3.7 nm) and large (d = 17 nm) gold nanoparticles bind to MspA, however, in different positions: small gold nanoparticles bind within the MspA pore, whereas the large gold nanoparticles bind to the upper region of MspA. These experiments demonstrate that gold nanoparticles can be positioned at different, well-defined distances from the underlying surface using the MspA pore as a template. These findings represent a significant step toward the use of electrically insulating stable proteins in combination with metal nanoparticles in nanodevices.


Subject(s)
Aluminum Silicates/chemistry , Gold/metabolism , Metal Nanoparticles/chemistry , Mycobacterium smegmatis , Porins/metabolism , Buffers , Gold/chemistry , Hydrophobic and Hydrophilic Interactions , Methanol/chemistry , Models, Molecular , Nanotechnology , Porins/chemistry , Protein Binding , Protein Conformation , Protein Stability , Surface Properties , Water/chemistry
19.
J Chem Phys ; 131(15): 157101; author reply 157102, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-20568888

ABSTRACT

A recent publication indicated that simulations of acetone-water mixtures using the KBFF model for acetone indicate demixing at mole fractions less than 0.28 of acetone, in disagreement with experiment and two previously published studies. Here, we indicate some inconsistancies in the current study which could help to explain these differences.

20.
J Chem Phys ; 128(24): 244511, 2008 Jun 28.
Article in English | MEDLINE | ID: mdl-18601352

ABSTRACT

Explicit expressions are developed for the chemical potential derivatives, partial molar volumes, and isothermal compressibility of solution mixtures involving four components at finite concentrations using the Kirkwood-Buff theory of solutions. In addition, a general recursion relationship is provided which can be used to generate the chemical potential derivatives for higher component solutions.


Subject(s)
Models, Chemical , Solutions , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...