Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Korean Soc Coloproctol ; 28(5): 253-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23185705

ABSTRACT

PURPOSE: Prostaglandin (PG) E2 is known to be closely related to cancer progression and is inactivated by 15-hydroxyprostaglandin dehydrogenase (PGDH). 15-PGDH is shown to have tumor suppressor activity and to be down-regulated in various cancers, including colorectal cancer (CRC). Therefore, we evaluated the expression of 15-PGDH and its prognostic effect in patients with CRC. METHODS: 15-PGDH expression was examined by using immunohistochemistry in 77 patients with CRC. Its prognostic significance was statistically evaluated. RESULTS: Negative 15-PGDH expression was noted in 55.8% of the 77 cases of CRC. 15-PGDH expression showed no correlation with any of the various clinicopathologic parameters. The status of lymph node metastasis, tumor-node-metastasis stages, and pre-operative carcinoembryonic antigen levels showed significant prognostic effect. However, univariate analysis revealed down-regulation of 15-PGDH not to be a predictor of poor survival. The 5-year overall survival rate was 71.7% in the group with positive expression of 15-PGDH and 67.1% in the group with negative expression of 15-PGDH, but this difference was not statistically significant (P = 0.751). CONCLUSION: 15-PGDH was down-regulated in 55.8% of the colorectal cancer patients. However, down-regulation of 15-PGDH showed no prognostic value in patients with CRC. Further larger scale or prospective studies are needed to clarify the prognostic effect of 15-PGDH down-regulation in patients with colorectal cancer.

2.
Antiviral Res ; 93(2): 253-259, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22197247

ABSTRACT

The sulfated polysaccharide, p-KG03, purified from the marine microalga, Gyrodinium impudium, is a unique compound comprising homogenous galactose units conjugated to uronic acid and sulfated groups. Although previous studies showed that p-KG03 suppresses tumor cell growth and infection by encephalomyocarditis virus, its effect against enveloped virus infection and the biological mechanism of action have not been elucidated. In this report, the inhibitory activity of p-KG03 against influenza virus was examined and compared with that of other sulfated polysaccharides (fucoidan and pentosan polysulfate) and antiviral agents (oseltamivir phosphate, oseltamivir carboxylate, amantadine, and ribavirin). The results of a cytopathic effect reduction assay using MDCK cells demonstrated that p-KG03 exhibited the 50% effective concentration (EC(50)) values of 0.19-0.48 µg/ml against influenza type A virus infection (selectivity index >200) but not all influenza type B viruses. Mechanism studies showed that inhibition of influenza virus replication was maximized when p-KG03 was added during or within 6 h after viral infection, suggesting that mainly the viral adsorption and internalization steps are targeted by this compound. The results of influenza virus binding assay to p-KG03 and fluorescence microscopy indicate that the antiviral activity of p-KG03 is directly associated with its interaction with viral particles. The sulfated polysaccharide p-KG03 is a potent and specific influenza A viral entry inhibitor and may be a candidate for antiviral drug development.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , Influenza, Human/virology , Microalgae/chemistry , Rhodophyta/chemistry , Animals , Antiviral Agents/chemistry , Cell Line , Humans , Influenza A virus/physiology , Influenza B virus/drug effects , Influenza B virus/physiology , Influenza, Human/drug therapy , Polysaccharides/chemistry , Polysaccharides/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...