Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38981068

ABSTRACT

Glass ceramic (GC) is the most promising material for objective lenses for extreme ultraviolet lithography that must meet the subnanometer precision, which is characterized by low values of high spatial frequency surface roughness (HSFR). However, the HSFR of GC is typically degraded during ion beam figuring (IBF). Herein, a developed method for constructing molecular dynamics (MD) models of GC was presented, and the formation mechanisms of surface morphologies were investigated. The results indicated that the generation of the dot-like microstructure was the result of the difference in the erosion rate caused by the difference in the intrinsic properties between ceramic phases (CPs) and glass phases (GPs). Further, the difference in the microstructure of the IBF surface under different beam angles was mainly caused by the difference in the two types of sputtering. Quantum mechanical calculations showed that the presence of interstitial atoms would result in electron rearrangement and that the electron localization can lead to a reduction in CP stability. To obtain a homogeneous surface, the effects of beam parameters on the heterogeneous surface were systematically investigated based on the proposed MD model. Then, a novel ion beam modification (IBM) method was proposed and demonstrated by TEM and GIXRD. The range of ion beam smoothing parameters that could effectively converge the HSFR of the modified surface was determined through numerous experiments. Using the optimized beam parameters, an ultrathin homogeneous modified surface within 3 nm was obtained. The HSFR of GC smoothed by ion beam modification-assisted smoothing (IBMS) dropped from 0.348 to 0.090 nm, a 74% reduction. These research results offer a deeper understanding of the morphology formation mechanisms of the GC surfaces involved in ion beam processing and may point to a new approach for achieving ultrasmooth heterostructure surfaces down to the subnanometer scale.

2.
Sensors (Basel) ; 24(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931573

ABSTRACT

The visual measurement of deep holes in composite material workpieces constitutes a critical step in the robotic assembly of aerospace components. The positioning accuracy of assembly holes significantly impacts the assembly quality of components. However, the complex texture of the composite material surface and mutual interference between the imaging of the inlet and outlet edges of deep holes significantly challenge hole detection. A visual measurement method for deep holes in composite materials based on the radial penalty Laplacian operator is proposed to address the issues by suppressing visual noise and enhancing the features of hole edges. Coupled with a novel inflection-point-removal algorithm, this approach enables the accurate detection of holes with a diameter of 10 mm and a depth of 50 mm in composite material components, achieving a measurement precision of 0.03 mm.

3.
Sensors (Basel) ; 24(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38610270

ABSTRACT

The robotic drilling of assembly holes is a crucial process in aerospace manufacturing, in which measuring the normal of the workpiece surface is a key step to guide the robot to the correct pose and guarantee the perpendicularity of the hole axis. Multiple laser displacement sensors can be used to satisfy the portable and in-site measurement requirements, but there is still a lack of accurate analysis and layout design. In this paper, a simplified parametric method is proposed for multi-sensor normal measurement devices with a symmetrical layout, using three parameters: the sensor number, the laser beam slant angle, and the laser spot distribution radius. A normal measurement error distribution simulation method considering the random sensor errors is proposed. The measurement error distribution laws at different sensor numbers, the laser beam slant angle, and the laser spot distribution radius are revealed as a pyramid-like region. The influential factors on normal measurement accuracy, such as sensor accuracy, quantity and installation position, are analyzed by a simulation and verified experimentally on a five-axis precision machine tool. The results show that increasing the laser beam slant angle and laser spot distribution radius significantly reduces the normal measurement errors. With the laser beam slant angle ≥15° and the laser spot distribution radius ≥19 mm, the normal measurement error falls below 0.05°, ensuring normal accuracy in robotic drilling.

4.
Materials (Basel) ; 17(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38255464

ABSTRACT

CFRP/Ti stacks composed of carbon fiber-reinforced plastic composites (CFRP) and titanium alloys (Ti) are widely used in aerospace fields. However, in the integrated hole-making process of CFRP/Ti stacks, the machining characteristics of various materials are significantly different, and constant machining parameters cannot simultaneously meet the high-quality machining requirements of two materials. In addition, errors exist between the actual thickness of each material layer and the theoretical value, which causes an impediment to the monitoring of the machining interface and the corresponding adjustment of parameters. An adaptive machining method for the helical milling of CFRP/Ti stacks based on interface identification is proposed in this paper. The machining characteristics of the pneumatic spindle and the interface state in the helical milling of CFRP/Ti stacks are analyzed using self-developed portable helical milling equipment, and a new algorithm for the real-time monitoring of the machining interface position and adaptive adjustment of the machining parameters according to the interface identification result is proposed. Helical milling experiments were carried out, the results show that the proposed method can effectively identify the position of the machining interface with good identification accuracy. Moreover, the proposed parameter-adaptive optimized machining method for CFRP/Ti stacks can significantly improve hole diameter accuracy and machining quality.

5.
Langmuir ; 39(46): 16606-16617, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37934508

ABSTRACT

Chemo-mechanical grinding (CMG) is a valid processing method to achieve a low-damage surface of silicon. However, the atomic interfacial mechanism during the CMG is still unclear. Herein, the CMG process of silicon was investigated using first principles and frictional wear tests in which the effects of pressure and speed on the interfacial reaction were comprehensively analyzed. Simulations showed that the formation and breakage of chemical bonds occurred at the CeO2/silicon interface during CMG, and the newly formed chemical bonds were stronger than those on the silicon surface. Also, it was found that the pressure and speed improved the materials removal rate by means of accelerating the interfacial chemical reactions, which is also verified by frictional wear tests. This study provides new insights into the atomic interfacial mechanism during silicon CMG.

6.
Langmuir ; 39(38): 13668-13677, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37699563

ABSTRACT

Yttrium aluminum garnet (YAG) crystals are an important gain medium in thin-sheet solid-state lasers, and their processing quality directly affects the performance of solid-state lasers. But it is difficult to achieve high efficiency and high quality of YAG crystals by traditional chemical mechanical polishing (CMP). In this study, we developed a new polishing slurry for photoassisted chemical mechanical polishing (PCMP) of YAG crystals. The polishing slurry is composed of peroxymonosulfate (PMS), manganese ferrite (MnFe2O4), alumina (Al2O3) abrasives, and deionized water. PCMP is conducted in an ultraviolet (UV) light environment. When employing this polishing slurry for PCMP processing of YAG crystals, the material removal rate (MRR) achieved 250 nm/min and the surface roughness achieved 0.35 nm Sa. The experiments verified that both UV light and MnFe2O4 can effectively activate PMS to produce active free radicals and further enhance the chemical action of the polishing slurry. X-ray photoelectron spectroscopy (XPS) analysis results indicated that active radicals reacted with the surface structure of the crystal and removed the aluminum-oxygen octahedron in large quantities from it. The structural defects reduced the surface hardness of the crystal, which means that active free radicals can modify the crystal surface materials.

7.
Materials (Basel) ; 16(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176436

ABSTRACT

GH4068 superalloy is a new type of nickel-based superalloy in the aerospace field. It is an important alloy material for the manufacture of aircraft tubular components and aero-engine hot-end components. These components need to be machined with good surface quality to meet their use requirements. New hybrid machining processes can improve the quality of surface finish compared to conventional machines. In this paper, ultrasonic assisted turning (UAT) technology was applied to the machining of GH4068 superalloy. The experimental system of UAT was established. Experiments of UAT and conventional turning (CT) of GH4068 superalloy were carried out to study the effects of cutting speed, feed speed, cutting depth and vibration amplitude on cutting force and surface roughness. The surface morphology of the workpiece and chip were observed. The experimental results show that Fx and Fy can be reduced by a maximum of 44% and 63%, respectively, and the surface roughness can be reduced by a maximum of 31% after adding ultrasonic vibration. Compared with CT, the UAT has a better machining quality, a more obvious chip-breaking effect, and a smaller chip bending radius, which guides the high-quality processing of the GH4068 superalloy.

8.
Materials (Basel) ; 16(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36984415

ABSTRACT

Because of the high hardness, brittleness, and anisotropy of reaction-bonded silicon carbide composites (RB-SiC), it is challenging to process high-quality textures on their surfaces. With the advantages of high processing accuracy and low processing damage, femtosecond laser processing is the preferred technology for the precision processing of difficult-to-process materials. The present work used a femtosecond laser with a linear scanning path and a spot diameter of 18 µm to process microgrooves on RB-SiC. The influence of different processing parameters on the microgroove profile, dimensions, and ablation rate (AR) was investigated. The ablation width Wa and average ablation depth Da of microgrooves were evaluated, and the various patterns of varying processing parameters were obtained. A model for Wa prediction was developed based on the laser fluence within the finite length (FL). As a result, the experimental values were distributed near the prediction curve with a maximum error of 20.4%, showing an upward trend of gradually decreasing increments. For a single pass, the AR value was mainly determined by the laser energy, which could reach the scale of 106 µm3/s when the laser energy was greater than 50 µJ. For multiple passes, the AR value decreased as the number of passes increased and it finally stabilized. The above research will provide theoretical and experimental support for the high-quality and efficient processing of RB-SiC surface textures.

9.
Polymers (Basel) ; 14(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36236171

ABSTRACT

Polyetheretherketone (PEEK) is a promising thermo-plastic polymer material due to its excellent mechanical properties. To further improve the mechanical properties of PEEK, different kinds of short fibers are added into the PEEK matrix. The grinding machinability of short-fiber-reinforced PEEK varies with the effect of fiber type and content. Therefore, it is crucial to investigate the surface quality and removal mechanism of fiber-reinforced PEEK in ultra-precision grinding. In this paper, different fiber types and mass fractions of short-fiber-reinforced PEEK, including carbon-fiber-reinforced PEEK (CF/PEEK) and glass-fiber-reinforced PEEK (GF/PEEK), are employed. The grinding machinability of short-fiber-reinforced PEEK was investigated using grinding experiments with grinding wheels of different grit sizes. The effects of the fiber type and mass fraction on the surface quality and removal mechanism during grinding were discussed. The results showed that the brittle-ductile transition depth of carbon fiber was much larger than that of glass fiber, so it was easier to achieve ductile removal in grinding with the carbon fiber. Therefore, the ground surface roughness of CF/PEEK was smaller than that of GF/PEEK under the same grinding conditions. With the increase in carbon fiber mass fraction, the ground surface roughness of CF/PEEK decreased due to the higher hardness. The brittle-ductile transition depth of glass fiber was small, and it was easy to achieve brittle removal when grinding. When the glass fiber removal mode was brittle removal, the GF/PEEK surface roughness increased with the increase in glass fiber content.

10.
Appl Opt ; 61(17): 4993-5001, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-36256175

ABSTRACT

Nontransparent flat parts with weak rigidity are widely used in precision physics experiments, aerospace, and other fields in which parallelism is required. However, existing methods cannot meet requirements due to the limitation of measurement size and accuracy. This paper proposes a new method for measuring parallelism of nontransparent flat parts with high accuracy and then builds a submicrometer-level parallelism measuring system. The 3D model of the whole part is reconstructed by thickness and flatness, which are measured respectively. Subsequently, parallelism is evaluated by the principle of minimum directional zone. The method is verified by an experiment with a thin copper substrate sized ⊘200mm×2.48mm on the parallelism measuring system. The experiment result shows that the part's parallelism is 7.41 µm, and the expanded uncertainty of parallelism measurement system is 0.34 µm, k=2.

11.
Nanomaterials (Basel) ; 12(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889713

ABSTRACT

Silicon carbide (SiC) is a promising semiconductor material for making high-performance power electronics with higher withstand voltage and lower loss. The development of cost-effective machining technology for fabricating SiC wafers requires a complete understanding of the deformation and removal mechanism. In this study, molecular dynamics (MD) simulations were carried out to investigate the origins of the differences in elastic-plastic deformation characteristics of the SiC polytypes, including 3C-SiC, 4H-SiC and 6H-SiC, during nanoindentation. The atomic structures, pair correlation function and dislocation distribution during nanoindentation were extracted and analyzed. The main factors that cause elastic-plastic deformation have been revealed. The simulation results show that the deformation mechanisms of SiC polytypes are all dominated by amorphous phase transformation and dislocation behaviors. Most of the amorphous atoms recovered after completed unload. Dislocation analysis shows that the dislocations of 3C-SiC are mainly perfect dislocations during loading, while the perfect dislocations in 4H-SiC and 6H-SiC are relatively few. In addition, 4H-SiC also formed two types of stacking faults.

12.
Polymers (Basel) ; 14(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335410

ABSTRACT

Polyetheretherketone (PEEK) is a novel polymer material with excellent material properties. The hardness and strength of PEEK can be further improved by introducing fiber reinforcements to meet the high-performance index of the aerospace industry. The machinability will be influenced when the material properties change. Therefore, it is crucial to investigate the influence of material properties of the fiber-reinforced PEEK on machinability. In this paper, the main materials include pure PEEK, short carbon-fiber-reinforced PEEK (CF/PEEK), and short glass-fiber-reinforced PEEK (GF/PEEK). The effects of the fiber type and mass fraction on the tensile strength, hardness, and elastic modulus of materials were discussed using the tensile test and nanoindentation experiments. Furthermore, the fiber-reinforced PEEK lapping machinability was investigated using lapping experiments with abrasive papers of different mesh sizes. The results showed that the hardness and elastic modulus of PEEK could be improved with fiber mass fraction, and the tensile strength of CF/PEEK can be improved compared with that of GF/PEEK. In terms of lapping ability, the material removal rates of the fiber-reinforced materials were found to be lower than the pure PEEK due to the higher hardness of the fiber. During the lapping process, the material removal methods mainly included the ductile deformation or desquamation of reinforcing fiber and ductile removal of the PEEK matrix. The lapped surface roughness of PEEK material can be improved by fiber reinforcement.

13.
Appl Opt ; 61(1): 279-286, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35200829

ABSTRACT

Edge roll-off affects the performance of key parts in precision optics processing. Currently, the evolution mechanism of edge roll-off is not understood clearly, and the existing suppression methods for edge roll-off are not qualified in real applications. To address the problem, this paper presents a new edge roll-off suppression method in double-sided lapping with fixed abrasives. The evolution mechanism of edge roll-off in double-sided lapping is analyzed by utilizing the finite element method (FEM). Three key influential factors affecting edge roll-off, including filling materials and the width of the sacrificial and filling loops, are optimized by FEM analysis and verified by experiments. By applying the optimized parameters, the depth and width of the edge roll-off on thin copper substrates are reduced by about 80% and 55%, respectively.

14.
Micromachines (Basel) ; 12(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919070

ABSTRACT

Thin-walled parts are widely used in shock wave and detonation physics experiments, which require high surface accuracy and equal thickness. In order to obtain the wall thickness of thin-walled spherical shell parts accurately, a new measurement method is proposed. The trajectories, including meridian and concentric trajectories, are employed to measure the thickness of thin-walled spherical shell parts. The measurement data of the inner and outer surfaces are unified in the same coordinate system, and the thickness is obtained based on a reconstruction model. The meridian and concentric circles' trajectories are used for measuring a spherical shell with an outer diameter of Φ210.6 mm and an inner diameter of Φ206.4 mm. Without the data in the top area, the surface errors of the outer and inner surfaces are about 5 µm and 6 µm, respectively, and the wall-thickness error is about 8 µm with the meridian trajectory.

15.
Micromachines (Basel) ; 12(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919287

ABSTRACT

The dwell time algorithm is one of the key technologies that determines the accuracy of a workpiece in the field of ultra-precision computer-controlled optical surfacing. Existing algorithms mainly consider meticulous mathematics theory and high convergence rates, making the computation process more uneven, and the flatness cannot be further improved. In this paper, a reasonable elementary approximation algorithm of dwell time is proposed on the basis of the theoretical requirement of a removal function in the subaperture polishing and single-peak rotational symmetry character of its practical distribution. Then, the algorithm is well discussed with theoretical analysis and numerical simulation in cases of one-dimension and two-dimensions. In contrast to conventional dwell time algorithms, this proposed algorithm transforms superposition and coupling features of the deconvolution problem into an elementary approximation issue of function value. Compared with the conventional methods, it has obvious advantages for improving calculation efficiency and flatness, and is of great significance for the efficient computation of large-aperture optical polishing. The flatness of φ150 mm and φ100 mm workpieces have achieved PVr150 = 0.028 λ and PVcr100 = 0.014 λ respectively.

16.
Micromachines (Basel) ; 12(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445699

ABSTRACT

To clarify the influence mechanism of strain rate effect on deformation characteristics of aluminum nitride (AlN) ceramics, some varied-velocity nanoscratching tests were carried out using a Berkovich indenter in this paper. The deformation characteristics of the scratched grooves were observed using the scanning electron microscope. The experimental results showed higher scratch speed would lead to shallower penetration depth, fewer cracks, and indenter fewer slipping, which was more conducive to the plastic deformation of AlN ceramics. Considering the strain rate effect and the elastic recovery of material, a model for predicting the Berkovich indenter penetration depth under edge-forward mode was established. The prediction results were consistent with the experimental data, and the error was less than 5%, indicating that the model is effective. Based on the Boussinesq field, the Cerruti field, and the Sliding bubble field, a strain rate dependent scratch stress field model was established. The stress field revealed higher scratch speed may significantly reduce the maximum principal stress in the stress field under the indenter, which is the fundamental reason for reducing the crack damage and promoting the plastic deformation. The above study can provide theoretical guidance for reducing the processing damage of AlN ceramics.

17.
Ultrasonics ; 103: 106102, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32078844

ABSTRACT

Aluminum honeycomb has been widely used in many industrial fields, especially the aeronautics and aerospace industries, owing to its high strength and stiffness to weight ratio. Machining of aluminum honeycomb is usually associated with deformations and burrs. Ultrasonic cutting has been introduced as a promising method to overcome these constraints. In order to conduct in-depth research on the ultrasonic cutting for aluminum honeycomb by disc cutter, a 3D finite element model is carried out and verification tests are performed. Comparison result of simulated and experimental cutting forces indicates that the developed model agrees well with the experiment. Based on the developed model, cutting forces and contact relationship between cutter and honeycomb during the cutting process are studied. The reason for the periodic increase in cutting force is analyzed, subsequently. Moreover, the stress distribution in the cutting zone and honeycomb morphologies under different cutting conditions are compared and analyzed. Results show that the hexagonal structure of aluminum honeycomb can be protected and machining quality can be improved by using ultrasonic vibration. Therefore, high quality and efficient machining for aluminum honeycomb can be achieved.

18.
J Nanosci Nanotechnol ; 19(8): 4671-4676, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30913767

ABSTRACT

High chromium alloy is a kind of metal material with high corrosion resistance and high hardness. It is used in the thrust bearing bush of nuclear main pump in a severe environment. Based on the content of elements in high chromium alloy and the manufacturing preparation process of the alloy, a method for constructing the molecular dynamics (MD) model was proposed to study the machinability of the alloy. The MD simulation model of high chromium alloy was established based on alloy structure with the atomic random permutation and two bubble algorithms. Then, according to the actual manufacturing process of the high chromium alloy, a quenching process was introduced to simulate the actual manufacturing process of the high chromium alloy, so the property of the high chromium alloy model was improved and it was more suitable for precision machining. The accuracy of the model was verified by the internal structure and by calculating the nanohardness and density of the high chromium alloy model after adequate relaxation to studying the nanomachining performance. The coordination number of the high chromium alloy is about 4.3 calculated by integrating the radial distribution function. And there is not a perfect crystal structure in the alloy model. The density of the alloy model is about 7.549 g/cm2, which agreed with the results of actual experimental measurement. A series of MD simulations were performed to investigate the nanomechanical property of the high chromium alloy by using the MD model. The maximum depth of 2 nm, 2.5 nm and 3 nm indentation simulations were carried out with 3 nm indenter. The results showed that the nanohardness is about 6.951 GPa-8.095 GPa, these properties are very close to the real measured results. The material and the deformation property of the high chromium alloy were stable during the indentation process.

19.
Opt Express ; 26(9): 11608-11619, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716079

ABSTRACT

This paper presents a new localized vibration-assisted magnetic abrasive polishing (VAMAP) method using loose abrasives for V-groove and Fresnel optics finishing. The purpose is to improve the surface quality while maintaining the form of the microfeatures. This method allows abrasives to access the corners of the microfeatures and remove materials locally and uniformly by effectively controlling the magnetic field and vibration which overcomes the limitations of previous research. By using loose abrasives, the method achieved nanometer level surface roughness and damage-free surface while maintaining the form of the microfeatures. The results show that the surface roughness was reduced to about 7 nm Ra from the initial value of over 10 nm Ra while the microfeatures of V-groove and Fresnel optics were well maintained. At the same time, the surface defects including voids, scratches as well as tool marks were clearly removed.

20.
Sci Rep ; 6: 35269, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27734934

ABSTRACT

Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 µm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding.

SELECTION OF CITATIONS
SEARCH DETAIL
...