Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Nat Commun ; 14(1): 6577, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852961

ABSTRACT

Alzheimer's disease (AD) is the most common dementia. It is known that women with one ApoE4 allele display greater risk and earlier onset of AD compared with men. In mice, we previously showed that follicle-stimulating hormone (FSH), a gonadotropin that rises in post-menopausal females, activates its receptor FSHR in the hippocampus, to drive AD-like pathology and cognitive impairment. Here we show in mice that ApoE4 and FSH jointly trigger AD-like pathogenesis by activating C/EBPß/δ-secretase signaling. ApoE4 and FSH additively activate C/EBPß/δ-secretase pathway that mediates APP and Tau proteolytic fragmentation, stimulating Aß and neurofibrillary tangles. Ovariectomy-provoked AD-like pathologies and cognitive defects in female ApoE4-TR mice are ameliorated by anti-FSH antibody treatment. FSH administration facilitates AD-like pathologies in both young male and female ApoE4-TR mice. Furthermore, FSH stimulates AD-like pathologies and cognitive defects in ApoE4-TR mice, but not ApoE3-TR mice. Our findings suggest that in mice, augmented FSH in females with ApoE4 but not ApoE3 genotype increases vulnerability to AD-like process by activating C/EBPß/δ-secretase signalling.


Subject(s)
Alzheimer Disease , Animals , Female , Male , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Follicle Stimulating Hormone , Mice, Transgenic
2.
ACS Chem Neurosci ; 14(17): 3249-3264, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37583253

ABSTRACT

The brain-derived neurotrophic factor (BDNF)/TrkB pathway plays a crucial role in neural plasticity and neuronal survival but is often deficient in neurodegenerative diseases like Alzheimer's disease (AD). CF3CN acts as a specific TrkB agonist that displays therapeutic effects in the AD mouse model, but its brain/plasma ratio (B/P ratio) distribution is not satisfactory. To increase its brain exposure, we synthesized several derivatives and employed nanoparticle (NP) formulation to optimize the most potent #2 derivative's in vivo PK profiles. We generated stable #2-loaded zein/lactoferrin composite NPs (#2/zein/LF) using the antisolvent co-precipitation method. In vivo PK studies revealed that nanoencapsulation improved #2's oral bioavailability by approximately 2-fold and significantly enhanced its plasma Cmax and t1/2, but the brain profiles were comparable. Pharmacodynamics showed that #2/zein/LF activates TrkB signaling that phosphorylates asparagine endopeptidase (AEP) T322 and decreases its enzymatic activity, resulting in reduced AEP-cleaved amyloid precursor protein and Tau fragments in the brains of AD mice, correlating with its PK profiles. After 3 months of treatment in 3xTg mice, #2/zein/LF decreased AD pathologies and alleviated cognitive dysfunction. Hence, zein/LF composite nanoencapsulation is a promising drug delivery method for improving the PK profiles of a potential preclinical candidate for treating neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Nanoparticles , Zein , Mice , Animals , Alzheimer Disease/metabolism , Zein/metabolism , Zein/pharmacology , Zein/therapeutic use , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Disease Models, Animal , Receptor, trkB/metabolism
3.
Eur J Neurosci ; 58(6): 3555-3568, 2023 09.
Article in English | MEDLINE | ID: mdl-37608574

ABSTRACT

Limited axon regeneration following peripheral nerve injury may be related to activation of the lysosomal protease, asparaginyl endopeptidase (AEP, δ-secretase) and its degradation of the microtubule associated protein, Tau. Activity of AEP was increased at the site of sciatic nerve transection and repair but blocked in mice treated systemically with a specific AEP inhibitor, compound 11 (CP11). Treatments with CP11 enhanced axon regeneration in vivo. Amplitudes of compound muscle action potentials recorded 4 weeks after nerve transection and repair and 2 weeks after daily treatments with CP11 were double those of vehicle-treated mice. At that time after injury, axons of significantly more motor and sensory neurons had regenerated successfully and reinnervated the tibialis anterior and gastrocnemius muscles in CP11-treated mice than vehicle-treated controls. In cultured adult dorsal root ganglion neurons derived from wild type mice that were treated in vitro for 24 h with CP11, neurites were nearly 50% longer than in vehicle-treated controls and similar to neurite lengths in cultures treated with the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF). Combined treatment with CP11 and 7,8-DHF did not enhance outgrowth more than treatments with either one alone. Enhanced neurite outgrowth produced by CP11 was found also in the presence of the TrkB inhibitor, ANA-12, indicating that the enhancement was independent of TrkB signalling. Longer neurites were found after CP11 treatment in both TrkB+ and TrkB- neurons. Delta secretase inhibition by CP11 is a treatment for peripheral nerve injury with great potential.


Subject(s)
Axons , Peripheral Nerve Injuries , Animals , Mice , Amyloid Precursor Protein Secretases , Peripheral Nerve Injuries/drug therapy , Nerve Regeneration , Neurites
4.
Cell ; 186(16): 3350-3367.e19, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37421950

ABSTRACT

Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aß or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.


Subject(s)
Neurodegenerative Diseases , Synucleinopathies , Animals , Humans , alpha-Synuclein/metabolism , Synucleinopathies/diagnostic imaging , Synucleinopathies/metabolism , Neurodegenerative Diseases/metabolism , Positron-Emission Tomography , Brain/diagnostic imaging , Brain/metabolism
5.
Front Mol Neurosci ; 16: 1150399, 2023.
Article in English | MEDLINE | ID: mdl-37143467

ABSTRACT

Introduction: Growth-associated protein 43 (GAP-43) is known as a neuronal plasticity protein because it is widely expressed at high levels in neuronal growth cones during axonal regeneration. GAP-43 expressed in mature adult neurons is functionally important for the neuronal communication of synapses in learning and memory. Brain-derived neurotrophic factor (BDNF) is closely related to neurodegeneration and synaptic plasticity during the aging process. However, the molecular mechanisms regulating neurodegeneration and synaptic plasticity underlying the pathogenesis and progression of Alzheimer's disease (AD) still remain incompletely understood. Methods: Remarkably, the expressions of GAP-43 and BDNF perfectly match in various neurons in the Human Brain Atlas database. Moreover, GAP-43 and BDNF are highly expressed in a healthy adults' hippocampus brain region and are inversely correlated with the amyloid beta (Aß), which is the pathological peptide of amyloid plaques found in the brains of patients with AD. Results: These data led us to investigate the impact of the direct molecular interaction between GAP-43 and BDNF in hippocampal neuron fate. In this study, we show that GAP-43 and BDNF are inversely associated with pathological molecules for AD (Tau and Aß). In addition, we define the three-dimensional protein structure for GAP-43 and BDNF, including the predictive direct binding sites via analysis using ClusPro 2.0, and demonstrate that the deprivation of GAP-43 and BDNF triggers hippocampal neuronal death and memory dysfunction, employing the GAP-43 or BDNF knock-down cellular models and 5XFAD mice. Conclusion: These results show that GAP-43 and BDNF are direct binding partners in hippocampal neurons and that their molecular signaling might be potential therapeutic targets for AD.

6.
BMB Rep ; 56(2): 126-131, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36751943

ABSTRACT

The abnormal accumulation and aggregation of the misfolded α-synuclein protein is the neuropathological hallmark of all α-synucleinopathies, including Parkinson's disease. The secreted proteins known as netrins (netrin-1, netrin-3, and netrin-4) are related to laminin and have a role in the molecular pathway for axon guidance and cell survival. Interestingly, only netrin-1 is significantly expressed in the substantia nigra (SN) of healthy adult brains and its expression inversely correlates with that of α-synuclein, which prompted us to look into the role of α-synuclein and netrin-1 molecular interaction in the future of dopaminergic neurons. Here, we showed that netrin-1 and α-synuclein directly interacted in pre-formed fibrils (PFFs) generation test, real time binding assay, and co-immunoprecipitation with neurotoxin treated cell lysates. Netrin-1 deficiency appeared to activate the dopaminergic neuronal cell death signal pathway via α-synuclein aggregation and hyperphosphorylation of α-synuclein S129. Taken together, netrin-1 can be a promising therapeutic molecule in Parkinson's disease. [BMB Reports 2023; 56(2): 126-131].


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Netrin-1/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology
7.
NPJ Parkinsons Dis ; 9(1): 1, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609384

ABSTRACT

Parkinson's disease (PD) is the most common neurodegenerative motor disorder, and its pathologic hallmarks include extensive dopaminergic neuronal degeneration in the Substantia nigra associated with Lewy bodies, predominantly consisting of phosphorylated and truncated α-Synuclein (α-Syn). Asparagine endopeptidase (AEP) cleaves human α-Syn at N103 residue and promotes its aggregation, contributing to PD pathogenesis. However, how AEP mediates Lewy body pathologies during aging and elicits PD onset remains incompletely understood. Knockout of AEP or C/EBPß from α-SNCA mice, and their chronic rotenone exposure models were used, and the mechanism of α-Syn from the gut that spread to the brain was observed. Here we report that C/EBPß/AEP pathway, aggravated by oxidative stress, is age-dependently activated and cleaves α-Syn N103 and regulates Lewy body-like pathologies spreading from the gut into the brain in human α-SNCA transgenic mice. Deletion of C/EBPß or AEP substantially diminished the oxidative stress, neuro-inflammation, and PD pathologies, attenuating motor dysfunctions in aged α-SNCA mice. Noticeably, PD pathologies initiate in the gut and progressively spread into the brain. Chronic gastric exposure to a low dose of rotenone initiates Lewy body-like pathologies in the gut that propagate into the brain in a C/EBPß/AEP-dependent manner. Hence, our studies demonstrate that C/EBPß/AEP pathway is critical for mediating Lewy body pathology progression in PD.

8.
Mol Psychiatry ; 28(3): 1337-1350, 2023 03.
Article in English | MEDLINE | ID: mdl-36543925

ABSTRACT

Gut dysbiosis contributes to Parkinson's disease (PD) pathogenesis. Gastrointestinal disturbances in PD patients, along with gut leakage and intestinal inflammation, take place long before motor disorders. However, it remains unknown what bacterial species in gut microbiomes play the key role in driving PD pathogenesis. Here we show that Helicobacter hepaticus (H. hepaticus), abundant in gut microbiota from rotenone-treated human α-Synuclein gene (SNCA) transgenic mice and PD patients, initiates α-Synuclein pathology and motor deficits in an AEP-dependent manner in SNCA mice. Chronic Dextran sodium sulfate (DSS) treatment, an inflammatory inducer in the gut, activates AEP (asparagine endopeptidase) that cleaves α-Synuclein N103 and triggers its aggregation, promoting inflammation in the gut and the brain and motor defects in SNCA mice. PD fecal microbiota transplant or live H. hepaticus administration into antibiotics cocktail (Abx)-pretreated SNCA mice induces α-Synuclein pathology, inflammation in the gut and brain, and motor dysfunctions, for which AEP is indispensable. Hence, Helicobacter hepaticus enriched in PD gut microbiomes may facilitate α-Synuclein pathologies and motor impairments via activating AEP.


Subject(s)
Motor Disorders , Parkinson Disease , Mice , Humans , Animals , Parkinson Disease/genetics , alpha-Synuclein , Helicobacter hepaticus , Mice, Transgenic , Dopamine , Inflammation
9.
Elife ; 112022 09 02.
Article in English | MEDLINE | ID: mdl-36052994

ABSTRACT

There is increasing evidence that anterior pituitary hormones, traditionally thought to have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone action on brain receptors in mediating central neural and peripheral somatic functions. Here, we have created the most comprehensive neuroanatomical atlas on the expression of TSHR, LHCGR, and FSHR. We have used RNAscope, a technology that allows the detection of mRNA at single-transcript level, together with protein level validation, to document Tshr expression in 173 and Fshr expression in 353 brain regions, nuclei and subnuclei identified using the Atlas for the Mouse Brain in Stereotaxic Coordinates. We also identified Lhcgr transcripts in 401 brain regions, nuclei and subnuclei. Complementarily, we used ViewRNA, another single-transcript detection technology, to establish the expression of FSHR in human brain samples, where transcripts were co-localized in MALAT1-positive neurons. In addition, we show high expression for all three receptors in the ventricular region-with yet unknown functions. Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. In contrast, Fshr was localized to NeuN-positive neurons in the granular layer of the dentate gyrus in murine and human brain-both are Alzheimer's disease-vulnerable regions. Our atlas thus provides a vital resource for scientists to explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors on somatic function. New actionable pathways for human disease may be unmasked through further studies.


Subject(s)
Glycoproteins , Sertoli Cells , Animals , Brain , Hormones , Humans , Male , Mice , Testis/physiology
10.
Front Cell Neurosci ; 16: 857664, 2022.
Article in English | MEDLINE | ID: mdl-35496909

ABSTRACT

Axon regeneration after peripheral nerve injury is slow and inefficient, leading to generally poor functional recovery. Activity-dependent experimental therapies that increase expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors enhance regeneration, suggesting that treatments with BDNF might also be effective. However, recombinant human BDNF (rhBDNF), as well as 7,8-dihydroxyflavone (7,8-DHF), a small molecular BDNF mimetic, may have limited treatment applications because of their modest oral bioavailability and pharmacokinetic profile. R13 is a 7,8-DHF prodrug. Upon oral administration, it is converted in the liver to 7,8-DHF. In immunoblots from tissues at the site of nerve injury, a single oral treatment with R13 to mice following sciatic nerve transection and repair produced a rapid and prolonged increase in immunoreactivity to phosphorylated TrkB, prolonged phosphorylation of mitogen activated protein kinase (MAPK/Erk1/2), and a rapid but transient increase in phosphorylated AKT (protein kinase B). Intramuscular injections of fluorescent retrograde tracers into the gastrocnemius and tibialis anterior muscles 4 weeks after nerve injury resulted in significantly greater numbers of labeled motoneurons and dorsal root ganglion neurons in R13-treated mice than in vehicle-treated controls. Direct electromyographic (EMG) responses (M waves) were significantly larger in R13-treated mice 4 weeks after injury than vehicle-treated controls or mice treated with oral 7,8-DHF. Oral treatments with the prodrug, R13, are a potent therapy for stimulating axon regeneration and functional recovery after peripheral nerve injury.

11.
Mol Psychiatry ; 27(8): 3396-3409, 2022 08.
Article in English | MEDLINE | ID: mdl-35546632

ABSTRACT

Diabetes is a risk factor for Alzheimer's disease (AD), which is also called type 3 diabetes with insulin reduction and insulin resistance in AD patient brains. However, the molecular mechanism coupling diabetes to AD onset remains incompletely understood. Here we show that inflammation, associated with obesity and diabetes elicited by high-fat diet (HFD), activates neuronal C/EBPß/AEP signaling that drives AD pathologies and cognitive disorders. HFD stimulates diabetes and insulin resistance in neuronal Thy1-C/EBPß transgenic (Tg) mice, accompanied with prominent mouse Aß accumulation and hyperphosphorylated Tau aggregation in the brain, triggering cognitive deficits. These effects are profoundly diminished when AEP is deleted from C/EBPß Tg mice. Chronic treatment with inflammatory lipopolysaccharide (LPS) facilitates AD pathologies and cognitive disorders in C/EBPß Tg but not in wild-type mice, and these deleterious effects were substantially alleviated in C/EBPß Tg/AEP -/- mice. Remarkably, the anti-inflammatory drug aspirin strongly attenuates HFD-induced diabetes and AD pathologies in neuronal C/EBPß Tg mice. Therefore, our findings demonstrate that inflammation-activated neuronal C/EBPß/AEP signaling couples diabetes to AD.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Insulin Resistance , Animals , Mice , Alzheimer Disease/metabolism , Diet, High-Fat/adverse effects , Insulin Resistance/physiology , Mice, Transgenic , Inflammation/metabolism , Brain/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Diabetes Mellitus/metabolism , Disease Models, Animal
12.
Neurotherapeutics ; 19(4): 1283-1297, 2022 07.
Article in English | MEDLINE | ID: mdl-35595958

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease with motor disorders as the key clinical features. BDNF/TrkB neurotrophic signalings are progressively reduced, whereas δ-secretase, a protease that cleaves α-synuclein (α-Syn) at N103 and promotes its aggregation and neurotoxicity, is gradually escalated in PD patient brains, associated with dopaminergic neuronal loss in the Substantia Nigra. Here, we show that stimulation of deficient BDNF/TrkB signalings with its small molecular agonist CF3CN displays the promising therapeutic effect, and blockade of δ-secretase with an optimal specific inhibitor #11A exhibits marked therapeutic effect, and combination of both demonstrates additive restorative efficacy in MPTP-induced human SNCA transgenic PD mice. Upon oral administration, CF3CN robustly activates TrkB-mediated neurotrophic pathway in the brains of SNCA mice and decreases α-Syn N103 cleavage by δ-secretase, and #11A strongly blocks δ-secretase and reduces α-Syn N103 fragmentation, increasing TH-positive dopaminergic neurons. The mixture of CF3CN and #11A shows the maximal TH and dopamine levels with demonstrable BDNF as compared to negligible BDNF in vehicle-treated MPTP/SNCA mice, leading to the climaxed motor functions. Notably, both compounds possess the appropriate in vivo PK profiles. Hence, our findings support that CF3CN and #11A are promising therapeutic pharmaceutical agents for treating PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Humans , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Dopamine/metabolism , Dopaminergic Neurons , Mice, Inbred C57BL , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Signal Transduction , Substantia Nigra/metabolism
13.
Nat Struct Mol Biol ; 29(4): 292-305, 2022 04.
Article in English | MEDLINE | ID: mdl-35332321

ABSTRACT

The noradrenergic locus ceruleus (LC) is the first site of detectable tau pathology in Alzheimer's disease (AD), but the mechanisms underlying the selective vulnerability of the LC in AD have not been completely identified. In the present study, we show that DOPEGAL, a monoamine oxidase A (MAO-A) metabolite of norepinephrine (NE), reacts directly with the primary amine on the Lys353 residue of tau to stimulate its aggregation and facilitate its propagation. Inhibition of MAO-A or mutation of the Lys353 residue to arginine (Lys353Arg) decreases tau Lys353-DOPEGAL levels and diminishes tau pathology spreading. Wild-type tau preformed fibrils (PFFs) trigger Lys353-DOPEGAL formation, tau pathology propagation and cognitive impairment in MAPT transgenic mice, all of which are attenuated with PFFs made from the Lys353Arg mutant. Thus, the selective vulnerability of LC neurons in AD may be explained, in part, by NE oxidation via MAO-A into DOPEGAL, which covalently modifies tau and accelerates its aggregation, toxicity and propagation.


Subject(s)
Alzheimer Disease , Norepinephrine , Acetaldehyde/analogs & derivatives , Alzheimer Disease/genetics , Animals , Locus Coeruleus/metabolism , Locus Coeruleus/pathology , Mice , Mice, Transgenic , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Norepinephrine/metabolism , tau Proteins/genetics , tau Proteins/metabolism
14.
Nature ; 603(7901): 470-476, 2022 03.
Article in English | MEDLINE | ID: mdl-35236988

ABSTRACT

Alzheimer's disease has a higher incidence in older women, with a spike in cognitive decline that tracks with visceral adiposity, dysregulated energy homeostasis and bone loss during the menopausal transition1,2. Inhibiting the action of follicle-stimulating hormone (FSH) reduces body fat, enhances thermogenesis, increases bone mass and lowers serum cholesterol in mice3-7. Here we show that FSH acts directly on hippocampal and cortical neurons to accelerate amyloid-ß and Tau deposition and impair cognition in mice displaying features of Alzheimer's disease. Blocking FSH action in these mice abrogates the Alzheimer's disease-like phenotype by inhibiting the neuronal C/EBPß-δ-secretase pathway. These data not only suggest a causal role for rising serum FSH levels in the exaggerated Alzheimer's disease pathophysiology during menopause, but also reveal an opportunity for treating Alzheimer's disease, obesity, osteoporosis and dyslipidaemia with a single FSH-blocking agent.


Subject(s)
Alzheimer Disease , Follicle Stimulating Hormone , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Bone Density , Cognition , Female , Follicle Stimulating Hormone/metabolism , Humans , Mice , Thermogenesis
15.
Adv Sci (Weinh) ; 9(7): e2103396, 2022 03.
Article in English | MEDLINE | ID: mdl-35023303

ABSTRACT

Netrin-1 is a chemotropic cue mediating axon growth and neural migration in neuronal development, and its receptors deletion in colorectal cancer and UNC5s act as dependence receptors regulating neuronal apoptosis. Asparagine endopeptidase (AEP) is an age-dependent protease that cuts human alpha-synuclein (α-Syn) at N103 and triggers its aggregation and neurotoxicity. In the current study, it is reported that UNC5C receptor is cleaved by AEP in Parkinson's disease (PD) and facilitates dopaminergic neuronal loss. UNC5C is truncated by active AEP in human α-SNCA transgenic mice in an age-dependent manner or induced by neurotoxin rotenone. Moreover, UNC5C is fragmented by AEP in PD brains, inversely correlated with reduced netrin-1 levels. Netrin-1 deprivation in primary cultures induces AEP and caspase-3 activation, triggering UNC5C proteolytic fragmentation and enhancing neuronal loss. Noticeably, blocking UNC5C cleavage by AEP attenuates netrin-1 deprivation-elicited neuronal death and motor disorders in netrin flox/flox mice. Overexpression of AEP-truncated UNC5C intracellular fragment strongly elicits α-Syn aggregation and dopaminergic loss, locomotor deficits in α-SNCA transgenic mice. Hence, the findings demonstrate that netrin-1 reduction and UNC5C truncation by AEP contribute to PD pathogenesis.


Subject(s)
Parkinson Disease , Animals , Dopamine , Mice , Mice, Transgenic , Proteolysis , Rotenone
16.
Prog Neurobiol ; 209: 102212, 2022 02.
Article in English | MEDLINE | ID: mdl-34958873

ABSTRACT

ApoE4 is a major genetic risk determinant for Alzheimer's disease (AD) and drives its pathogenesis via Aß-dependent and -independent pathways. C/EBPß, a proinflammatory cytokine-activated transcription factor, is upregulated in AD patients and increases cytokines and δ-secretase expression. Under physiological conditions, ApoE is mainly expressed in glial cells, but its neuronal expression is highly elevated under pathological stresses. However, how neuronal ApoE4 mediates AD pathologies remains incompletely understood. Here we show that ApoE4 activates C/EBPß that subsequently regulates APP, Tau and BACE1 mRNA expression in mouse neurons, driving AD-like pathogenesis. To interrogate the pathological roles of both human ApoE4 and C/EBPß elevation in neurons in the aged brain, we develop neuronal specific Thy1-ApoE4/C/EBPß double transgenic mice. Neuronal ApoE4 strongly activates C/EBPß and augmented δ-secretase subsequently cleaves increased mouse APP and Tau, promoting AD-like pathologies. Notably, Thy1-ApoE4/C/EBPß mice develop amyloid deposits, Tau aggregates and neurodegeneration in an age-dependent manner, leading to synaptic dysfunction and cognitive disorders. Thus, our findings demonstrate that neuronal ApoE4 triggers AD pathogenesis via activating the crucial regulator C/EBPß.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , CCAAT-Enhancer-Binding Protein-beta , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apolipoprotein E4/genetics , Aspartic Acid Endopeptidases , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Humans , Mice , Neurons/metabolism
17.
Mol Psychiatry ; 26(12): 7838-7850, 2021 12.
Article in English | MEDLINE | ID: mdl-34489530

ABSTRACT

Respiratory chain complex I deficiency elicits mitochondrial dysfunction and reactive oxidative species (ROS), which plays a crucial role in Parkinson's disease (PD) pathogenesis. However, it remains unclear whether the impairment in other complexes in the mitochondrial oxidative phosphorylation chain is also sufficient to trigger PD onset. Here we show that inhibition of Complex II or III in the electron transport chain (ETC) induces the motor disorder and PD pathologies in neuronal Thy1-C/EBPß transgenic mice. Through a cell-based screening of mitochondrial respiratory chain inhibitors, we identified TTFA (complex II inhibitor) and Atovaquone (complex III inhibitor), which robustly block the oxidative phosphorylation functions, strongly escalate ROS, and activate C/EBPß/AEP pathway that triggers dopaminergic neuronal cell death. Oral administration of these inhibitors to Thy1-C/EBPß mice elicits constipation and motor defects, associated with Lewy body-like inclusions. Deletion of SDHD (Succinate dehydrogenase) gene from the complex II in the Substantia Nigra of Thy1-C/EBPß mice triggers ROS and PD pathologies, resulting in motor disorders. Hence, our findings demonstrate that mitochondrial ETC inactivation triggers PD pathogenesis via activating C/EBPß/AEP pathway.


Subject(s)
Parkinson Disease , Animals , Dopaminergic Neurons/metabolism , Mice , Mice, Transgenic , Mitochondria/metabolism , Oxidative Stress/physiology , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology
18.
EMBO J ; 40(17): e106320, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34260075

ABSTRACT

Inflammation plays an important role in the pathogenesis of Alzheimer's disease (AD). Some evidence suggests that misfolded protein aggregates found in AD brains may have originated from the gut, but the mechanism underlying this phenomenon is not fully understood. C/EBPß/δ-secretase signaling in the colon was investigated in a 3xTg AD mouse model in an age-dependent manner. We applied chronic administration of 1% dextran sodium sulfate (DSS) to trigger gut leakage or colonic injection of Aß or Tau fibrils or AD patient brain lysates in 3xTg mice and combined it with excision/cutting of the gut-brain connecting vagus nerve (vagotomy), in order to explore the role of the gut-brain axis in the development of AD-like pathologies and to monitor C/EBPß/δ-secretase signaling under those conditions. We found that C/EBPß/δ-secretase signaling is temporally activated in the gut of AD patients and 3xTg mice, initiating formation of Aß and Tau fibrils that spread to the brain. DSS treatment promotes gut leakage and facilitates AD-like pathologies in both the gut and the brain of 3xTg mice in a C/EBPß/δ-secretase-dependent manner. Vagotomy selectively blunts this signaling, attenuates Aß and Tau pathologies, and restores learning and memory. Aß or Tau fibrils or AD patient brain lysates injected into the colon propagate from the gut into the brain via the vagus nerve, triggering AD pathology and cognitive dysfunction. The results indicate that inflammation activates C/EBPß/δ-secretase and initiates AD-associated pathologies in the gut, which are subsequently transmitted to the brain via the vagus nerve.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Colitis/metabolism , Colon/metabolism , tau Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Brain/metabolism , Cysteine Endopeptidases/metabolism , Mice , Mice, Inbred C57BL
19.
Mol Cancer Ther ; 20(9): 1640-1652, 2021 09.
Article in English | MEDLINE | ID: mdl-34158346

ABSTRACT

Solid tumors start as a local disease, but some are capable of metastasizing to the lymph nodes and distant organs. The hypoxic microenvironment, which is critical during cancer development, plays a key role in regulating cancer progression and metastasis. However, the molecular mechanisms mediating the disseminated cancer cell metastasis remain incompletely understood. Here, we show that C/EBPß/AEP signaling that is upregulated in breast cancers mediates oxidative stress and lung metastasis, and inactivation of asparagine endopeptidase (AEP, also known as legumain) robustly regulates breast cancer reactive oxygen species (ROS) and metastasis. AEP, a protease activated in acidic conditions, is overexpressed in numerous types of cancer and promotes metastasis. Employing a breast cancer cell line MDA-MD-231, we show that C/EBPß, an oxidative stress or inflammation-activated transcription factor, and its downstream target AEP mediate ROS production as well as migration and invasion in cancer cells. Deficiency of AEP in the MMTV-PyMT transgenic breast cancer mouse model significantly regulates oxidative stress and suppresses lung metastasis. Administration of an innovative AEP inhibitor substantially mitigates ROS production and cancer metastasis. Hence, our study demonstrates that pharmacologic inhibition of AEP activity might provide a disease-modifying strategy to suppress cancer metastasis.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cysteine Endopeptidases/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/secondary , Oxidative Stress , Animals , Apoptosis , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Proliferation , Cysteine Endopeptidases/genetics , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays
20.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34140411

ABSTRACT

The molecular mechanism of Alzheimer's disease (AD) pathogenesis remains obscure. Life and/or environmental events, such as traumatic brain injury (TBI), high-fat diet (HFD), and chronic cerebral hypoperfusion (CCH), are proposed exogenous risk factors for AD. BDNF/TrkB, an essential neurotrophic signaling for synaptic plasticity and neuronal survival, are reduced in the aged brain and in AD patients. Here, we show that environmental factors activate C/EBPß, an inflammatory transcription factor, which subsequently up-regulates δ-secretase that simultaneously cleaves both APP and Tau, triggering AD neuropathological changes. These adverse effects are additively exacerbated in BDNF+/- or TrkB+/- mice. Strikingly, TBI provokes both senile plaque deposit and neurofibrillary tangles (NFT) formation in TrkB+/- mice, associated with augmented neuroinflammation and extensive neuronal loss, leading to cognitive deficits. Depletion of C/EBPß inhibits TBI-induced AD-like pathologies in these mice. Remarkably, amyloid aggregates and NFT are tempospatially distributed in TrkB+/- mice brains after TBI, providing insight into their spreading in the progression of AD-like pathologies. Hence, our study revealed the roles of exogenous (TBI, HFD, and CCH) and endogenous (TrkB/BDNF) risk factors in the onset of AD-associated pathologies.


Subject(s)
Alzheimer Disease/metabolism , Disease Progression , Environment , Nerve Growth Factors/metabolism , Signal Transduction , Aging/metabolism , Alzheimer Disease/complications , Amyloid/metabolism , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Brain-Derived Neurotrophic Factor/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cognitive Dysfunction/complications , Cognitive Dysfunction/pathology , Cysteine Endopeptidases/metabolism , Diet, High-Fat , Humans , Mice, Inbred C57BL , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , Receptor, trkB/metabolism , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...