Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10412, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369732

ABSTRACT

Primary tissue-derived epithelial organoids are a physiologically relevant in vitro intestinal model that have been implemented for both basic research and drug development applications. The existing method of culturing intestinal organoids in surface-attached native extracellular matrix (ECM) hydrogel domes is not readily amenable to large-scale culture and contributes to culture heterogeneity. We have developed a method of culturing intestinal organoids within suspended basement membrane extract (BME) hydrogels of various geometries, which streamlines the protocol, increases the scalability, enables kinetic sampling, and improves culture uniformity without specialized equipment or additional expertise. We demonstrate the compatibility of this method with multiple culture formats, and provide examples of suspended BME hydrogel organoids in downstream applications: implementation in a medium-throughput drug screen and generation of Transwell monolayers for barrier evaluation. The suspended BME hydrogel culture method will allow intestinal organoids, and potentially other organoid types, to be used more widely and at higher throughputs than previously possible.


Subject(s)
Hydrogels , Intestines , Organoids , Extracellular Matrix , Cell Culture Techniques/methods
2.
Adv Biol (Weinh) ; 7(12): e2200333, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36932900

ABSTRACT

Representation of humans from diverse backgrounds in the drug development process is key to advancing health equity, and while clinical trial design has recently made strides toward greater inclusivity, preclinical drug development has struggled to make those same gains. One barrier to inclusion is the current lack of robust and established in vitro model systems that simultaneously capture the complexity of human tissues while representing patient diversity. Here, the use of primary human intestinal organoids as a mechanism to advance inclusive preclinical research is proposed. This in vitro model system not only recapitulates tissue functions and disease states, but also retains the genetic identity and epigenetic signatures of the donors from which they are derived. Thus, intestinal organoids are an ideal in vitro prototype for capturing human diversity. In this perspective, the authors call for an industry-wide effort to leverage intestinal organoids as a starting point to actively and intentionally incorporate diversity into preclinical drug programs.


Subject(s)
Intestines , Organoids , Humans
3.
Sci Transl Med ; 13(590)2021 04 21.
Article in English | MEDLINE | ID: mdl-33723017

ABSTRACT

Although coronavirus disease 2019 (COVID-19) causes cardiac dysfunction in up to 25% of patients, its pathogenesis remains unclear. Exposure of human induced pluripotent stem cell (iPSC)-derived heart cells to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed productive infection and robust transcriptomic and morphological signatures of damage, particularly in cardiomyocytes. Transcriptomic disruption of structural genes corroborates adverse morphologic features, which included a distinct pattern of myofibrillar fragmentation and nuclear disruption. Human autopsy specimens from patients with COVID-19 reflected similar alterations, particularly sarcomeric fragmentation. These notable cytopathic features in cardiomyocytes provide insights into SARS-CoV-2-induced cardiac damage, offer a platform for discovery of potential therapeutics, and raise concerns about the long-term consequences of COVID-19 in asymptomatic and severe cases.


Subject(s)
COVID-19/complications , Induced Pluripotent Stem Cells/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Autopsy , Cells, Cultured , Heart/virology , Humans , Myocardium/pathology , Transcriptome
4.
bioRxiv ; 2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32935097

ABSTRACT

Although COVID-19 causes cardiac dysfunction in up to 25% of patients, its pathogenesis remains unclear. Exposure of human iPSC-derived heart cells to SARS-CoV-2 revealed productive infection and robust transcriptomic and morphological signatures of damage, particularly in cardiomyocytes. Transcriptomic disruption of structural proteins corroborated adverse morphologic features, which included a distinct pattern of myofibrillar fragmentation and numerous iPSC-cardiomyocytes lacking nuclear DNA. Human autopsy specimens from COVID-19 patients displayed similar sarcomeric disruption, as well as cardiomyocytes without DNA staining. These striking cytopathic features provide new insights into SARS-CoV-2 induced cardiac damage, offer a platform for discovery of potential therapeutics, and raise serious concerns about the long-term consequences of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...