Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2814, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561403

ABSTRACT

The emergence of high-form-factor electronics has led to a demand for high-density integration of inorganic thin-film devices and circuits with full stretchability. However, the intrinsic stiffness and brittleness of inorganic materials have impeded their utilization in free-form electronics. Here, we demonstrate highly integrated strain-insensitive stretchable metal-oxide transistors and circuitry (442 transistors/cm2) via a photolithography-based bottom-up approach, where transistors with fluidic liquid metal interconnection are embedded in large-area molecular-tailored heterogeneous elastic substrates (5 × 5 cm2). Amorphous indium-gallium-zinc-oxide transistor arrays (7 × 7), various logic gates, and ring-oscillator circuits exhibited strain-resilient properties with performance variation less than 20% when stretched up to 50% and 30% strain (10,000 cycles) for unit transistor and circuits, respectively. The transistors operate with an average mobility of 12.7 ( ± 1.7) cm2 V-1s-1, on/off current ratio of > 107, and the inverter, NAND, NOR circuits operate quite logically. Moreover, a ring oscillator comprising 14 cross-wired transistors validated the cascading of the multiple stages and device uniformity, indicating an oscillation frequency of ~70 kHz.

2.
Materials (Basel) ; 13(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297380

ABSTRACT

The development of novel dielectric materials with reliable dielectric properties and low-temperature processibility is crucial to manufacturing flexible and high-performance organic thin-film transistors (OTFTs) for next-generation roll-to-roll organic electronics. Here, we investigate the solution-based fabrication of high-k aluminum oxide (Al2O3) thin films for high-performance OTFTs. Nanocluster-based Al2O3 films fabricated by highly energetic photochemical activation, which allows low-temperature processing, are compared to the conventional nitrate-based Al2O3 films. A wide array of spectroscopic and surface analyses show that ultralow-temperature photochemical activation (<60 °C) induces the decomposition of chemical impurities and causes the densification of the metal-oxide film, resulting in a highly dense high-k Al2O3 dielectric layer from Al-13 nanocluster-based solutions. The fabricated nanocluster-based Al2O3 films exhibit a low leakage current density (<10-7 A/cm2) at 2 MV/cm and high dielectric breakdown strength (>6 MV/cm). Using this dielectric layer, precisely aligned microrod-shaped 2,7-dioctyl[1]benzothieno [3,2-b][1] benzothiophene (C8-BTBT) single-crystal OTFTs were fabricated via solvent vapor annealing and photochemical patterning of the sacrificial layer.

3.
Adv Mater ; 32(40): e2003276, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32875685

ABSTRACT

The increasing interest in flexible and wearable electronics has demanded a dramatic improvement of mechanical robustness in electronic devices along with high-resolution implemented architectures. In this study, a site-specific stress-diffusive manipulation is demonstrated to fulfill highly robust and ultraflexible amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) and integrated circuits. The photochemically activated combustion sol-gel a-IGZO TFTs on a mesa-structured polyimide show an average saturation mobility of 6.06 cm2 V-1 s-1 and a threshold voltage of -0.99 V with less than 9% variation, followed by 10 000 bending cycles with a radius of 125 µm. More importantly, the site-specific monolithic formation of mesa pillar-structured devices can provide fully integrated logic circuits such as seven-stage ring-oscillators, meeting the industrially needed device density and scalability. To exploit the underlying stress-diffusive mechanism, a physical model is provided by using a variety of chemical, structural, and electrical characterizations along with multidomain finite-element analysis simulation. The physical models reveal that a highly scalable and robust device can be achieved via the site-specific mesa architecture, by enabling generation of multineutral layers and fine-tuning the accumulated stresses on specific element of devices with their diffusion out into the boundary of the mesa regions.

4.
ACS Appl Mater Interfaces ; 12(39): 44288-44296, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32902256

ABSTRACT

Here, we demonstrate a side-gated in-plane structure of solution-processed amorphous oxide semiconductor ionotronic devices and logic circuits enabled by ion gel gate dielectrics with a monolithically integrated nanoscale passivation architecture. The large capacitance of the electric double layer (EDL) in the ion gel allows a device structure to be a side gate geometry, forming an in-plane structured amorphous In-Ga-Zn-O (a-IGZO) ionotronic transistor, which can be translated into a simplified logic gate configuration with a low operation voltage. Particularly, the monolithic passivation of the coplanar electrodes offers advantages over conventional inhomogeneous passivation, mitigating unintentional parasitic leakage current through the ion gel dielectric layer. More importantly, the monolithically integrated passivation over electrodes was readily obtained with a complementary metal-oxide semiconductor-compatible photochemical process by employing a controlled ultraviolet light manipulation under ozone ambient, which introduced not only much enhanced electrical characteristics but also a scalable device architecture. We investigated various electrical behaviors of the side-gated a-IGZO ionotronic transistor based on EDL, which is called an electric double layer transistor (EDLT), and logic circuits enabled by photochemically realized monolithic aluminum oxide (AlOX) passivation comparing to the native or polymerized passivation layer, which reveals that the photoassisted AlOX secures high-performance a-IGZO EDLTs with a low off current (<5.23 × 10-8 A), high on/off ratio (>1.87 × 105), and exceptional high carrier mobility (>14.5 cm2 V-1 s-1). Owing to the significantly improved electrical characteristics, an inverter circuit was successfully achieved with broad operation voltages from an ultralow VDD of 1 mV to 1.5 V, showing a fully logical voltage transfer characteristic with a gain of more than 4 V V-1.

5.
Chemistry ; 26(42): 9126-9156, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32090384

ABSTRACT

For the fabrication of next-generation flexible metal oxide devices, solution-based methods are considered as a promising approach because of their potential advantages, such as high-throughput, large-area scalability, low-cost processing, and easy control over the chemical composition. However, to obtain certain levels of electrical performance, a high process temperature is essential, which can significantly limit its application in flexible electronics. Therefore, this article discusses recent research conducted on developing low-temperature, solution-processed, flexible, metal oxide semiconductor devices, from a single thin-film transistor device to fully integrated circuits and systems. The main challenges of solution-processed metal oxide semiconductors are introduced. Recent advances in materials, processes, and semiconductor structures are then presented, followed by recent advances in electronic circuits and systems based on these semiconductors, including emerging flexible energy-harvesting devices for self-powered systems that integrate displays, sensors, data-storage units, and information processing functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...