Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Syst ; 45(4): 41, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33608815

ABSTRACT

Despite recent research on joint motion measurement to monitor human body movement, current measurement techniques and tools have significant limitations, including requiring large space for measurement and causing discomfort in test subjects wearing motion sensors. Our study aims, first, to develop carbon nanotube (CNT)-based textile joint motion sensors. Second, ours study aims to identify the most suitable CNT-based sensor structure and attachment method for use on a wearable platform during general exercise speeds. Lastly, we used these sensors on the human body, using sleeves and legs to find the most stable location, and we used the CNT-based sensor condition to monitor joint motions. We utilized our CNT-based sensor, which has proper elasticity as well as conductivity, and applied it to the elbow and knee joints. Based on the strain gauge principle, we monitored the variance of electric resistance that occurred when the CNT-based sensor was stretched due to limb motion. Our study tested 48 types of sensors. These sensors were applied to the CNT using different base knit textiles as well as different attachment methods, layers, sensor lengths, and sensor widths. The four most successful sensor types, which showed superior efficacy over the others in joint motion measurement, were selected for further study. These four sensors were then used to measure the elbow and knee joint motions of human subjects by placing them on different locations on sleeves and legs. The CNT knit textile sensors best suited to measuring joint motions are those with a double-layered CNT knit and 5 cm long × 0.5 cm or 1 cm wide sensors attached to a polyester¬-based knit using a welding method. The best position for the sensor to more stably monitor joint motions was the "below hinge position" from the elbow or knee hinge joint. Our study suggests an alternative strategy for joint-motion measurement that could contribute to the development of more comfortable and human-friendly methods of human limb motion measurement.


Subject(s)
Clothing , Extremities/physiology , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Movement/physiology , Textiles , Humans , Nanotubes, Carbon
2.
J Med Syst ; 39(12): 191, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26490149

ABSTRACT

This research is an extension of a previous research [1] on the different effects of sensor location that is relatively suitable for heart rate sensing. This research aimed to elucidate the causes of wide variations in heart rate measurements from the same sensor position among subjects, as observed in previous research [1], and to enhance designs of the inductive textile electrode to overcome these variations. To achieve this, this study comprised two parts: In part 1, X-ray examinations were performed to determine the cause of the wide variations noted in the findings from previous research [1], and we found that at the same sensor position, the heart activity signal differed with slight differences in the positions of the heart of each subject owing to individual differences in the anatomical heart location. In part 2, three types of dual-loop-type textile electrodes were devised to overcome variations in heart location that were confirmed in part 1 of the study. The variations with three types of sensor designs were compared with that with a single-round type of electrode design, by using computer simulation and by performing a t-test on the data obtained from the experiments. We found that the oval-oval shaped, dual-loop-type textile electrode was more suitable than the single round type for determining morphological characteristics as well as for measuring appropriate heart activity signals. Based on these results, the oval-oval, dual-loop-type was a better inductive textile electrode that more effectively overcomes individual differences in heart location during heart activity sensing based on the magnetic-induced conductivity principle.


Subject(s)
Clothing , Electrodes , Heart Rate , Heart/anatomy & histology , Remote Sensing Technology/instrumentation , Telemedicine/instrumentation , Computer Simulation , Equipment Design , Humans
3.
Article in English | MEDLINE | ID: mdl-25571434

ABSTRACT

There are many types of devices which help to manage a personal health conditions such as heartbeat chest belt, pedometer and smart watch. And the most common device has the relationship with heart rate or ECG data. However, users have to attach some electrode or fasten the belt on the bare skin to measure bio-signal information. Therefore, most of people want more convenient and short-ready-time and no-need to attach electrode. In this paper, we proposed the high-resolution measuring system of mechanical activity of cardiac muscle and thereby measure heartbeat. The principle of the proposed measuring method is that the alternating current generate alternating magnetic field around coil. This primary magnetic field induces eddy current which makes magnetic field against primary coil in the nearby objects. To measure high-resolution changes of the induced secondary magnetic fields, we used digital Phase-locked loop(PLL) circuit which provides more high-resolution traces of frequency changes than the previous studies based on digital frequency counter method. As a result of our preliminary experiment, peak-peak intervals of the proposed method showed high correlation with R-R intervals of clinical ECG signals(r=0.9249). Also, from signal traces of the proposed method, we might make a conjecture that the contraction of atrium or ventricle is reflected by changing conductivity of cardiac muscle which is beating ceaselessly.


Subject(s)
Heart/physiology , Monitoring, Ambulatory/instrumentation , Adult , Electrocardiography , Electrodes , Electromagnetic Fields , Heart Rate , Humans , Male , Myocardial Contraction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...