Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 873: 162119, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36773913

ABSTRACT

Hydrothermal carbonization has gained attention in converting wet organic solid waste into hydrochar with many applications such as solid fuel, energy storage material precursor, fertilizer or soil conditioner. Recently, various catalysts such as organic and inorganic catalysts are employed to guide the properties of the hydrochar. This review presents a summarize and a critical discussion on types of catalysts, process parameters and catalytic mechanisms. The catalytic impact of carboxylic acids is related to their acidity level and the number of carboxylic groups. The catalysis level with strong mineral acids is likely related to the number of hydronium ions liberated from their hydrolysis. The impact of inorganic salts is determined by the Lewis acidity of the cation. The metallic ions in metallic salts may incorporate into the hydrochar and increase the ash of the hydrochar. The selection of catalysts for various applications of hydrochars and the environmental and the techno-economic aspects of the process are also presented. Although some catalysts might enhance the characteristics of hydrochar for various applications, these catalysts may also result in considerable carbon loss, particularly in the case of organic acid catalysts, which may potentially ruin the overall advantage of the process. Overall, depending on the expected application of the hydrochar, the type of catalyst and the amount of catalyst loading requires careful consideration. Some recommendations are made for future investigations to improve laboratory-scale process comprehension and understanding of pathways as well as to encourage widespread industrial adoption.

2.
Polymers (Basel) ; 15(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679291

ABSTRACT

The chemical recycling of end-of-life polylactic acid (PLA) plays roles in mitigating environmental pressure and developing circular economy. In this regard, one-pot tandem alcoholysis and hydrogenation of PLA was carried out to produce 1,2-propanediol, which is a bulk chemical in polymer chemistry. In more detail, the commercially available Raney Co was employed as the catalyst, and transformation was conducted in ethanol, which acted as nucleophilic reagent and solvent. Single-factor analysis and Box-Behnken design were used to optimize the reaction conditions. Under the optimized condition, three kinds of PLA materials were subjected to degradation. Additionally, 74.8 ± 5.5%, 76.5 ± 6.2%, and 71.4 ± 5.7% of 1,2-propanediol was yielded from PLA powder, particle, and straws, respectively, which provided a recycle protocol to convert polylactic acid waste into value-added chemicals.

3.
Macromol Rapid Commun ; 44(1): e2200303, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35666548

ABSTRACT

Molecular recognition in biological systems plays a vital role in the precise construction of biomacromolecules and the corresponding biological activities. Such recognition mainly relies on the highly specific binding of complementary molecular pairs with complementary sizes, shapes, and intermolecular forces. It still remains challenging to develop artificial complementary motif pairs for coordination-driven self-assembly. Herein, a series of shape-dependent complementary motif pairs, based on ditopic 2,2':6',2″-terpyridine (TPY) backbone, are designed and synthesized. The fidelity degrees of self-assemblies from these motifs are carefully evaluated by multi-dimensional mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling. In addition, two levels of self-recognition in both homoleptic and heteroleptic assembly are discovered in the assembled system. Through finely tuning the shape and size of the ligands, a complementary pair is developed with error-free narcissistically self-sorting at two levels of self-recognition, and the intrinsic principle is carefully investigated.


Subject(s)
Mass Spectrometry , Models, Molecular , Magnetic Resonance Spectroscopy , Ligands
4.
J Am Chem Soc ; 144(36): 16559-16571, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35998652

ABSTRACT

Molecular geometry represents one of the most important structural features and governs physical properties and functions of materials. Nature creates a wide array of substances with distinct geometries but similar chemical composition with superior efficiency and precision. However, it remains a formidable challenge to construct abiological macromolecules with various geometries based on identical repeating units, owing to the lack of corresponding synthetic approaches for precisely manipulating the connectivity between monomers and feasible techniques for characterizing macromolecules at the single-molecule level. Herein, we design and synthesize a series of tetratopic monomers with chevron stripe shape which serve as the key precursors to produce four distinct types of metallo-macromolecules with well-defined geometries, viz., the concentric hexagon, helicoid polymer, ladder polymer, and cross-linked polymer, via platinum-acetylide couplings. Concentric hexagon, helicoid, and ladder metallo-polymers are directly visualized by transmission electron microscopy, atomic force microscopy, and ultra-high-vacuum low-temperature scanning tunneling microscopy at the single-molecule level. Finally, single-walled carbon nanotubes (SWCNTs) are selected as the guest to investigate the structure-property relationship based on such macromolecules, among which the helicoid metallo-polymer shows high efficiency in wrapping SWCNTs with geometry-dependent selectivity.


Subject(s)
Nanotubes, Carbon , Polymers , Macromolecular Substances/chemistry , Microscopy, Atomic Force , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Polymers/chemistry
5.
ACS Appl Mater Interfaces ; 13(48): 57100-57106, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34843222

ABSTRACT

Acid-catalyzed conversion of biomass into bio-based platform chemicals such as levulinic acid and 5-hydroxymethylfurfural is an important route in biorefineries, which has attracted much attention in recent years. Such a route however unavoidably yields massive recalcitrant byproducts called humins, which are now broadly considered as waste and are limited to combustion, causing unfavorable energy and environmental processes. Therefore, the development of a value-added utilization approach for such humin byproducts is crucial for making the biorefineries economical and environmentally viable. In this work, we present a starting point for valorization of humins via the preparation of carbon-based iron oxide nanocomposites of FeO@graphite@C by using the humins as carbon resources and material templates via a facile synthesis strategy. The as-prepared catalyst is capable of promoting the reverse water-gas shift reaction and reaching a high CO2 conversion ratio with excellent CO selectivity (> 99%) at 500-700 °C, enabling an efficient utilization of waste CO2. The unique graphite-capsuled FeO structure of FeO@graphite@C was found to be the origin of its excellent catalytic activity toward CO2 reduction into CO, which shifts electrons from the graphite layer to FeO, reconstructing the Fe electron structure. This strengthened the electrophilic attack ability toward CO2 and weakened the bond with the derived CO* species of the Fe active sites, associated with the excellent CO2 conversion and CO selectivity.

6.
J Mech Behav Biomed Mater ; 110: 103864, 2020 10.
Article in English | MEDLINE | ID: mdl-32957182

ABSTRACT

In this work, surface modification of nano silver-loaded zirconium phosphate (6S-NP3) were obtained from simultaneous silanization of γ-methacryloxypropyltrimethoxysilane (MPS) and grafting reaction of methyl methacrylate (MMA), and then mixed with denture base resin (E-Denture) to prepare denture base composites using 3D printer printing. FT-IR spectra confirmed that surface silanization and grafting reaction had occurred and MPS and MMA were successfully anchored on the surface of 6S-NP3. XRD results demonstrated that surface modification had occurred on the surface of hexagonal lattice. The average diameter data indicated that the surface modification decreased the average diameter of nanoparticles. The water contact angle (WCA) was found increasing as the surface modification. SEM images illustrated that the dispersion and compatibility of nanoparticles in denture base composite materials had improved. The results of mechanical properties presented that composites with the addition of P-6S-NP3 nanoparticles achieved higher flexural strength, flexural modulus and impact strength. The data of antibacterial activities revealed that composites had exhibited good antibacterial activities against either S. aureus or E. coli and the latter showed better antibacterial efficacy than the former.


Subject(s)
Escherichia coli , Staphylococcus aureus , Composite Resins , Materials Testing , Pliability , Spectroscopy, Fourier Transform Infrared , Surface Properties , Zirconium
7.
Ultrason Sonochem ; 69: 105253, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32731127

ABSTRACT

The violent collapse of inertial bubbles generates high temperature inside and emits strong impulsive pressure. Previous tests on sonoluminescence and cavitation erosion showed that the influence of liquid temperature on these two parameters is different. In this paper, we conducted a bubble dynamic analysis to explore the mechanism of the temperature effect and account for the above difference. The results show that the increase of vapor at higher liquid temperatures changes both the external compression pressure and the internal cushion and is responsible for the variation of bubble collapse intensity. The different trends of the collapsing temperature and emitted sound pressure are caused by the energy distribution during the bubble collapse. Moreover, a series of simulations are conducted to establish the distribution map of the optimum liquid temperature where the collapse intensity is maximized. The relationship between the collapse intensity and the radial dynamics of the bubble is discussed and the reliable indicator is identified. This study provides a clear picture of how the thermodynamic process changes cavitation aggressiveness and enriches the understanding of this complex thermal-hydrodynamic phenomenon.

8.
Article in English | MEDLINE | ID: mdl-30970588

ABSTRACT

Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) emissions from basic small-scale waste incinerators (SWI) may cause health risks in nearby people and are thus subject to stringent regulations. The aim of this study was to evaluate PCDD/F emission and reduction of a basic SWI in the absence of air pollution controls (APCs). The results indicated that the stack gas and fly ash presented average PCDD/F levels and emission factors of 3.6 ng international toxic equivalent (I-TEQ)/Nm³ and 189.31µg I-TEQ/t and 6.89 ng I-TEQ/g and 137.85µg I-TEQ/t, respectively, much higher than those from large municipal solid waste incinerators (MSWI). PCDD/Fs congener fingerprints indicated that de novo synthesis played a dominant role in the low-temperature post-combustion zone and increased the presence of high-chlorine substituted congeners. On the basis of the emission factor 327.24 µg I-TEQ/t-waste, approximately 3000 g I-TEQ dioxins might be generated in total through basic SWIs and open burning. After refitting an SWI by adding activated carbon injection with a bag filter (ACI+BG), the PCDD/F emissions decreased to mean values of 0.042 ng I-TEQ/Nm³, far below the standard of 0.1 ng I-TEQ/Nm³, and the removal efficiency reached 99.13% in terms of I-TEQ. Therefore, it is entirely feasible to considerably reduce PCDD/F emissions by refitting basic SWI, which is positive for the future development of rural solid waste (RSW (RSW) disposal by SWI.


Subject(s)
Air Pollutants/analysis , Air Pollutants/chemistry , Coal Ash/chemistry , Dioxins/analysis , Dioxins/chemistry , Incineration/statistics & numerical data , Solid Waste/statistics & numerical data , Air Pollution , China , Environmental Monitoring
9.
Materials (Basel) ; 11(8)2018 Aug 11.
Article in English | MEDLINE | ID: mdl-30103496

ABSTRACT

A sequential production of levulinic acid (LA) and porous carbon material (CM) from cellulose was conducted by a two-step process. The cellulose was first acid hydrolyzed, and the preferred reaction conditions required a severity factor of 4.0⁻4.5, in which the yields of LA, formic acid, and solid residue were 38 ± 3 wt%, 17 ± 3 wt%, and 15 ± 3 wt%, respectively. The solid residue was further used for CM preparation through pyrolysis, with or without ZnCl2 activation. The ZnCl2 activation promoted the formation of CMs with improved thermal stability, high surface area (1184⁻2510 m²/g), and excellent phenol adsorption capacity (136⁻172 mg/g). The used CM can be easily regenerated by a simple methanol Soxhlet extraction process, and a comparable phenol adsorption capacity of 97 mg/g was maintained for the 5th reusing. Finally, 100 g cellulose produced 40.5 g LA, 18.9 g formic acid and 8.5 g porous CM, with a total carbon utilization ratio reaching 74.4%.

10.
Int J Nanomedicine ; 12: 2215-2226, 2017.
Article in English | MEDLINE | ID: mdl-28356738

ABSTRACT

A novel amphiphilic pH-sensitive triblock polymer brush (poly(ß-amino esters)-g-cholesterol)-b-poly(ethylene glycol)-b-(poly(ß-amino esters)-g-cholesterol) ((PAE-g-Chol)-b-PEG-b-(PAE-g-Chol)) was designed and synthesized successfully through a three-step reaction, and their self-assembled polymeric micelles were used as hydrophobic anticancer drug delivery carriers to realize effectively controlled release. The critical micelle concentrations were 6.8 µg/mL, 12.6 µg/mL, 17.4 µg/mL, and 26.6 µg/mL at pH values of 7.4, 6.5, 6.0, and 5.0, respectively. The trend of critical micelle concentrations indicated that the polymer had high stability that could prolong the circulation time in the body. The hydrodynamic diameter and zeta potential of the polymeric micelles were influenced significantly by the pH values. As pH decreased from 7.4 to 5.0, the particle size and zeta potential increased from 205.4 nm to 285.7 nm and from +12.7 mV to +47.0 mV, respectively. The pKb of the polymer was confirmed to be approximately 6.5 by the acid-base titration method. The results showed that the polymer had sharp pH-sensitivity because of the protonation of the amino groups, resulting in transformation of the PAE segment from hydrophobic to hydrophilic. Doxorubicin-loaded polymeric micelles were prepared with a high loading content (20%) and entrapment efficiency (60%) using the dialysis method. The in vitro results demonstrated that drug release rate and cumulative release were obviously dependent on pH values. Furthermore, the drug release mechanism was also controlled by the pH values. The polymer had barely any cytotoxicity, whereas the doxorubicin-loaded system showed high toxicity for HepG2 cells as free drugs. All the results proved that the pH-sensitive triblock polymer brush and its self-assembled micelle might be a potential delivery carrier for anticancer drugs with sustained release.


Subject(s)
Antineoplastic Agents/pharmacology , Cholesterol/analogs & derivatives , Drug Delivery Systems , Micelles , Polyethylene Glycols/chemistry , Polymers/chemistry , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cholesterol/chemical synthesis , Cholesterol/chemistry , Delayed-Action Preparations/pharmacology , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Liberation , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Particle Size , Polyethylene Glycols/chemical synthesis , Polymers/chemical synthesis , Proton Magnetic Resonance Spectroscopy , Static Electricity
11.
Polymers (Basel) ; 9(8)2017 Aug 18.
Article in English | MEDLINE | ID: mdl-30971051

ABSTRACT

Humins are low-value-added byproducts from the biomass acid hydrolysis process. In the present work, humins were first employed as a phenol replacement for synthesis of modified phenol-formaldehyde adhesives through a two-step process. In this process, humins were first utilized to obtain alkaline soluble products, mainly consisting of phenolics, through a hydrothermal process. The obtained alkaline soluble products then reacted with phenol and formaldehyde to produce humin-phenol-formaldehyde adhesive (HPFA). The physicochemical properties of HPFA, including viscosity, bonding strength, pH, free formaldehyde level, free phenol level and solid content, met the requirements of the GB/T 14732-2006 Chinese National Standard.

12.
Bioresour Technol ; 110: 715-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22330593

ABSTRACT

Formaldehyde was used as a polymerization agent to perform hydrothermal carbonization of black liquor for solid fuel production from 220 to 285°C. Compared to hydrochar prepared without formaldehyde, hydrochar produced in the presence of a 2.8wt.% formaldehyde solution (hydrochar-F) had 1.27-2.13 times higher yield, 1.02-1.36 times higher heating value (HHV), 1.20-2.31 times higher C recovery efficiency, 1.20-2.44 times higher total energy recovery efficiency, 0.51-0.64 times lower sulfur content, and 0.48-0.89 times lower ash content. The HHV of hydrochar-Fs ranged from 2.2×10(4) to 3.0×10(4)kJ/kg, while the HHV of hydrochar-F produced at 285°C was 1.90 times greater than that of the raw material (black liquor solid). These considerable improvements indicated that formaldehyde was an effective additive in hydrothermal carbonization of black liquor.


Subject(s)
Carbon/chemistry , Industrial Waste , Textile Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...