Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2103, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055416

ABSTRACT

Intense debate persists about the timing and magnitude of the wet phases in the East Asia deserts since the late Pleistocene. Here we show reconstructions of the paleohydrology of the East Gobi Desert since the last interglacial using satellite images and digital elevation models (DEM) combined with detailed section analyses. Paleolakes with a total area of 15,500 km2 during Marine Isotope Stage 5 (MIS 5) were identified. This expanded lake system was likely coupled to an 800-1000 km northward expansion of the humid region in East China, associated with much warmer winters. Humid climate across the Gobi Desert during MIS 5 likely resulted in a dustier MIS 4 over East Asia and the North Pacific. A second wet period characterized by an expanded, albeit smaller, lake area is dated to the mid-Holocene. Our results suggest that the East Asian Summer Monsoon (EASM) might have been much weaker during MIS 3.

2.
Sci Total Environ ; 748: 141359, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32798869

ABSTRACT

The marine bivalve, Tridacna spp. is an iconic invertebrate of the Indo-Pacific coral reef communities from Eocene to present. However, field observations found that the population of Tridacna spp. has declined in recent decades and some species are now endangered in the northern South China Sea (SCS) of western Pacific, which are speculated to be connected with the human overfishing and/or climate changes. Thus distinguishing the impacts of human activities and climate changes on Tridacna spp. populations is essential for understanding the dynamic of Tridacna spp. population variability. Such effort will be important in launching conservation policies and restoring population. Here, extensive sampling was applied on sub-fossil Tridacna spp. shells at the North Reef of the northern SCS, and the long-lived (with a lifespan more than 30 years) Tridacna spp. population index (LTPI) over the past 4500 years was obtained based on the AMS14C dating method. The results show that LTPI has experienced several short-term collapses (shorter than 200 years) over the past 4500 years, which may be associated with excessive cold winter temperatures. Remarkably, LTPI usually recovered rapidly after the rewarming of temperatures, indicating a robust self-recruitment mechanisms in response to natural climate changes. However, the last catastrophic collapse of LTPI that occurred at around ~1820 CE - ~1900 CE didn't rebound despite the significant rise in temperature over the recent 100 years. The decoupling between LTPI and climate changes in recent hundred years was probably induced by the increased commercial fishing in the SCS, which has overwhelmed and exacerbated the self-recruitment mechanisms between Tridacna spp. population and climate changes.


Subject(s)
Bivalvia , Conservation of Natural Resources , Animals , China , Coral Reefs , Fisheries
SELECTION OF CITATIONS
SEARCH DETAIL
...