Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioeng Transl Med ; 8(6): e10571, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023726

ABSTRACT

Manufacture of chimeric antigen receptor (CAR)-T cells usually involves the use of viral delivery systems to achieve high transgene expression. However, it can be costly and may result in random integration of the CAR into the genome, creating several disadvantages including variation in transgene expression, functional gene silencing and potential oncogenic transformation. Here, we optimized the method of nonviral, CRISPR/Cas9 genome editing using large donor DNA delivery, knocked-in an anti-tumor single chain variable fragment (scFv) into the N-terminus of CD3ε and efficiently generated fusion protein (FP) T cells. These cells displayed FP integration within the TCR/CD3 complex, lower variability in gene expression compared to CAR-T cells and good cell expansion after transfection. CD3ε FP T cells were predominantly CD8+ effector memory T cells, and exhibited anti-tumor activity in vitro and in vivo. Dual targeting FP T cells were also generated through the incorporation of scFvs into other CD3 subunits and CD28. Compared to viral-based methods, this method serves as an alternative and versatile way of generating T cells with tumor-targeting receptors for cancer immunotherapy.

2.
Int J Comput Assist Radiol Surg ; 14(8): 1365-1377, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30997634

ABSTRACT

PURPOSE: One of the main factors that affect the rigidity of flexible robots is the twist deformation because of the external force exerted on the end effector. Another important factor that affects accuracy is the fact that such robots do not have a constant curvature. The conventional kinematic model assumes that the curvature is constant; however, in reality, it is not. To improve the rigidity and accuracy of flexible robots used in minimally invasive surgery via preventing the twist deformation while ensuring a constant curvature, we propose a novel flexible manipulator with ball-constrained spherical (BCS) joints and a spring. METHODS: The BCS joints are used to prevent the twist deformation in the flexible robot. The joints have two degrees of freedom (DOFs), which limit the rotation about the axial direction. The rotation is limited because the ball that is inserted into a BCS joint can move only along the ball guide. To obtain a constant curvature, springs are installed among the BCS joints. The springs receive the uniform compression force generated among the joints, thus achieving a constant curvature. The proposed BCS joint is designed based on the diameter of the forceps, desired workspace, and desired bending angle. RESULTS: To evaluate the proposed mechanism, three experiments were performed using a 20-mm-diameter prototype consisting of 13 BCS joints with a two-DOF motion. The experimental results showed that the prototype can realize a constant curvature with a mean error of 0.21°, which can support up to 5 N with no apparent twist deformation. CONCLUSIONS: We developed a flexible manipulator with BCS joints for minimally invasive surgery. The proposed mechanism is anticipated to help prevent the twist deformation of the robot and realize a constant curvature. Accordingly, it is expected that rigidity is improved to ensure accuracy.


Subject(s)
Biomechanical Phenomena , Equipment Design , Minimally Invasive Surgical Procedures/instrumentation , Minimally Invasive Surgical Procedures/methods , Algorithms , Humans , Mechanical Phenomena , Motion , Reproducibility of Results , Rotation , Surgical Instruments
3.
Genes Genet Syst ; 91(5): 289-292, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28003573

ABSTRACT

Hair cells in the cochlea display highly regulated actin polymerization, which is mediated by the human diaphanous-related formin 1 gene (DIAPH1; also called DFNA1, DIA1). DFNA1, the first type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is known to be associated with mutations in DIAPH1. However, no genetic study of DFNA1 in Koreans with hearing loss has yet been reported. A 51-year-old patient in a Korean family with ADNSHL was examined by pure-tone audiometry, and genetic analysis of DIAPH1 was performed. A novel variant, p.I530S (c.1589T > G), was identified in the DIAPH1 gene, and the mutation was located in the highly conserved coiled-coil domain of the DIA1 protein, where an amino acid substitution was predicted to change the domain structure. Further functional investigations will provide more information to help us understand the role of DIAPH1 in maintenance of hair cell function in the auditory pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Hearing Loss, Sensorineural/genetics , Mutation, Missense , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , Formins , Hearing Loss, Sensorineural/metabolism , Heredity , Humans , Male , Middle Aged , Pedigree
4.
J Nanosci Nanotechnol ; 16(5): 4605-11, 2016 May.
Article in English | MEDLINE | ID: mdl-27483798

ABSTRACT

A nickel-phosphorus-alumina xerogel catalyst was prepared by a carbon-templating epoxide-driven sol-gel method (denoted as CNPA catalyst), and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel-phosphorus-alumina xerogel catalyst was also prepared by a similar method in the absence of carbon template (denoted as NPA catalyst). The effect of carbon template addition on the physicochemical properties and catalytic activities of the catalysts in the steam reforming of LNG was investigated. Both CNPA and NPA catalysts showed excellent textural properties with well-developed mesoporous structure. However, CNPA catalyst retained a more reducible nickel aluminate phase than NPA catalyst. XRD analysis of the reduced CNPA and NPA catalysts revealed that nickel sintering on the CNPA catalyst was suppressed compared to that on the NPA catalyst. From H2-TPD and CH4-TPD measurements of the reduced CNPA and NPA catalysts, it was also revealed that CNPA catalyst with large amount of hydrogen uptake and strong hydrogen-binding sites showed larger amount of methane adsorption than NPA catalyst. In the hydrogen production by steam reforming of LNG, CNPA catalyst with large methane adsorption capacity showed a better catalytic activity than NPA catalyst.

5.
Gene ; 591(1): 177-182, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27393652

ABSTRACT

BACKGROUND: Myosin is a key protein involved in regulating the shape and motility of cells. The MYH9 and MYH14 genes, which encode non-muscle myosin heavy chain IIA (NMMHC II-A) and IIC (NMMHC II-C), respectively, are expressed in the inner ear. These myosin genes are known to be associated with autosomal dominant non-syndromic hearing loss (ADNSHL); however, genetic studies in patients with ADNSHL in Korea have rarely been reported. METHODS: We analyzed the MYH9 and MYH14 genes in 75 Korean patients with ADNSHL. RESULTS: We identified 4 possible pathogenic variants: a novel variant p.F1303L and 2 previously reported variants (p.R1730C and p.R1785C) in the MYH9 gene, and a novel variant p.A1868T in the MYH14 gene. All the variants were located in the myosin tail domain, which is essential for the interaction of myosin with actin. These variants were predicted to be possibly pathogenic by functional prediction tools and were absent in 100 unrelated normal controls. CONCLUSION: These results suggest that all the variants identified in this study have a strong potential to affect the structural stability and/or function of non-muscle myosin in the inner ear, which might lead to ADNSHL. This study establishes the link between the genotype and development of ADNSHL and contributes to the establishment of Korean database for hereditary hearing loss.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Hearing Loss, Sensorineural/genetics , Myosin Heavy Chains/genetics , Amino Acid Sequence , Base Sequence , DNA Mutational Analysis , Female , Humans , Male , Mutation, Missense/genetics , Myosin Heavy Chains/chemistry , Pedigree , Republic of Korea
6.
J Nanosci Nanotechnol ; 15(10): 8324-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726511

ABSTRACT

A series of H3PW12O40 nano-catalysts supported on silica-alumina (XH3PW12O40/SA (X = 10, 15, 20, 25, and 30)) with different H3PW12O40 content (X, wt%) were prepared, and they were applied to the dehydration of glycerin to acrolein. The effect of H3PW12O40 content on the physicochemical properties and catalytic activities of XH3PW12O40/SA nano-catalysts was investigated. Surface area and pore volume of XH3PW12O40/SA catalysts decreased with increasing H3PW12O40 content. Formation of H3PW12O40 aggregates was observed in the catalysts with high H3PW12O40 loading. Brønsted acidity of the catalysts showed a volcano-shaped trend with respect to H3PW12O40 content. It was revealed that yield for acrolein increased with increasing Brønsted acidity of XH3PW12O40/SA catalysts. Brønsted acidity of XH3PW12O40/SA catalysts served as a crucial factor determining the catalytic performance in the dehydration of glycerin. Among the catalysts tested, 25H3PW12O40/SA catalyst with the largest Brønsted acidity showed the best catalytic performance.

7.
J Nanosci Nanotechnol ; 14(11): 8873-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25958620

ABSTRACT

Nano-structured α-K5PW11(M x OH2)O39 (M = Mn(II), Co(II), Ni(II), and Zn(II)) Keggin heteropolyacids (HPAs) were investigated by scanning tunneling microscopy (STM) and tunneling spectroscopy (TS) measurements in order to elucidate their redox property and oxidation catalysis. HPA molecules formed two-dimensional self-assembled monolayer arrays on highly oriented pyrolytic graphite (HOPG) surface. Furthermore, HPAs exhibited a distinctive current-voltage behavior referred to as negative differential resistance (NDR) phenomenon. The measured NDR peak voltage of HPAs was correlated with the reduction potential and the absorption edge energy determined by electrochemical method and UV-visible spectroscopy, respectively. NDR peak voltage of HPAs appeared at less negative voltage with increasing reduction potential and with decreasing UV-visible absorption edge energy. The correlations strongly suggested that NDR phenomenon was closely related to the redox property of HPAs. Vapor-phase oxidation of benzyl alcohol to benzaldehyde was carried out as a model reaction to track the oxidation catalysis of HPAs. NDR peak voltage appeared at less negative voltage with increasing yield for benzaldehyde.

SELECTION OF CITATIONS
SEARCH DETAIL
...