Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Water Res ; 262: 122078, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39018585

ABSTRACT

How to intensify the ammonia oxidation rate (AOR) is still a bottleneck impeding the technology development for the innovative acidic partial nitritation because the eosinophilic ammonia-oxidizing bacteria (AOB), such as Nitrosoglobus or Nitrosospira, were inhibited by the high-level free nitrous acid (FNA) accumulation in acidic environments. In this study, an innovative approach of dynamic acidic pH regulation control strategy was proposed to realize high-rate acidic partial nitritation driven by common AOB genus Nitrosomonas. The acidic partial nitrification process was carried out in a laboratory-scale sequencing batch moving bed biofilm reactor (SBMBBR) for long-term (700 days) to track the effect of dynamic acidic pH on nitrifying bacterial activity. The results indicated that the influent NH4+-N concentration was about 100 mg/L, the nitrite accumulation ratio was exceeding 90%, and the maximum AOR can reach 14.5 ± 2.6 mg N L-1h-1. Although the half-saturation inhibition constant of NOB (KI_FNA(AOB)) reached 0.37 ± 0.10 mg HNO2N/L and showed extreme adaptability in FNA, the inactivation effect of FNA (6.1 mg HNO2N/L) for NOB was much greater than that of AOB, with inactivation rates of 0.61 ± 0.08 h-1 and 0.06 ± 0.01 h-1, respectively. The effluent pH was gradually reduced to 4.5 by ammonia oxidation process and the periodic FNA concentration reached 6.5 mg HNO2N/L to inactivate nitrite-oxidizing bacteria (NOB) without negatively affecting Nitrosomonas during long-term operation. This result provides new insights for the future implementation of high-rate stabilized acidic partial nitritation by Nitrosomonas.

2.
Water Res ; 261: 121984, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38924949

ABSTRACT

The proliferation of nitrite oxidizing bacteria (NOB) still remains as a major challenge for nitrogen removal in mainstream wastewater treatment process based on partial nitrification (PN). This study investigated different operational conditions to establish mainstream PN for the fast start-up of membrane aerated biofilm reactor (MABR) systems. Different oxygen controlling strategies were adopted by employing different influent NH4+-N loads and oxygen supply strategies to inhibit NOB. We indicated the essential for NOB suppression was to reduce the oxygen concentration of the inner biofilm and the thickness of aerobic biofilm. A higher NH4+-N load (7.4 g-N/(m2·d)) induced higher oxygen utilization rate (14.4 g-O2/(m2·d)) and steeper gradient of oxygen concentration, which reduced the thickness of aerobic biofilm. Employing closed-end oxygen supply mode exhibited the minimum concentration of oxygen to realize PN, which was over 46% reduction of the normal open-end oxygen mode. Under the conditions of high NH4+-N load and closed-end oxygen supply mode, the microbial community exhibited a comparative advantage of ammonium oxidizing bacteria over NOB in the aerobic biofilm, with a relative abundance of Nitrosomonas of 30-40% and no detection of Nitrospira. The optimal fast start-up strategy was proposed with open-end aeration mode in the first 10 days and closed-end mode subsequently under high NH4+-N load. The results revealed the mechanism of NOB inhibition on the biofilm and provided strategies for a quick start-up and stable mainstream PN simultaneously, which poses great significance for the future application of MABR.

3.
ACS Appl Mater Interfaces ; 16(23): 29716-29727, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814480

ABSTRACT

The emergence of XBB.1.16 has gained rapid global prominence. Previous studies have elucidated that the infection of SARS-CoV-2 induces alterations in the mitochondrial integrity of host cells, subsequently influencing the cellular response to infection. In this study, we compared the differences in infectivity and pathogenicity between XBB.1.16 and the parental Omicron sublineages BA.1 and BA.2 and assessed their impact on host mitochondria. Our findings suggest that, in comparison with BA.1 and BA.2, XBB.1.16 exhibits more efficient spike protein cleavage, more efficient mediating syncytia formation, mild mitochondriopathy, and less pathogenicity. Altogether, our investigations suggest that, based on the mutation of key sites, XBB.1.16 exhibited enhanced infectivity but lower pathogenicity. This will help us to further investigate the biological functions of key mutation sites.


Subject(s)
COVID-19 , Mitochondria , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , COVID-19/virology , Mitochondria/metabolism , Animals , Mutation , Chlorocebus aethiops , Vero Cells , Mice , HEK293 Cells
4.
J Immunother Cancer ; 11(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38040417

ABSTRACT

BACKGROUND: Limited response to programmed death ligand-1 (PD-L1)/programmed death 1 (PD-1) immunotherapy is a major hindrance of checkpoint immunotherapy in non-small cell lung cancer (NSCLC). The abundance of PD-L1 on the tumor cell surface is crucial for the responsiveness of PD-1/PD-L1 immunotherapy. However, the negative control of PD-L1 expression and the physiological significance of the PD-L1 inhibition in NSCLC immunotherapy remain obscure. METHODS: Bioinformatics analysis was performed to profile and investigate the long non-coding RNAs that negatively correlated with PD-L1 expression and positively correlated with CD8+T cell infiltration in NSCLC. Immunofluorescence, in vitro PD-1 binding assay, T cell-induced apoptosis assays and in vivo syngeneic mouse models were used to investigate the functional roles of LINC02418 and mmu-4930573I07Rik in regulating anti-PD-L1 therapeutic efficacy in NSCLC. The molecular mechanism of LINC02418-enhanced PD-L1 downregulation was explored by immunoprecipitation, RNA immunoprecipitation (RIP), and ubiquitination assays. RIP, luciferase reporter, and messenger RNA degradation assays were used to investigate the m6A modification of LINC02418 or mmu-4930573I07Rik expression. Bioinformatics analysis and immunohistochemistry (IHC) verification were performed to determine the significance of LINC02418, PD-L1 expression and CD8+T cell infiltration. RESULTS: LINC02418 is a negative regulator of PD-L1 expression that positively correlated with CD8+T cell infiltration, predicting favorable clinical outcomes for patients with NSCLC. LINC02418 downregulates PD-L1 expression by enhancing PD-L1 ubiquitination mediated by E3 ligase Trim21. Both hsa-LINC02418 and mmu-4930573I07Rik (its homologous RNA in mice) regulate PD-L1 therapeutic efficacy in NSCLC via Trim21, inducing T cell-induced apoptosis in vitro and in vivo. Furthermore, METTL3 inhibition via N6-methyladenosine (m6A) modification mediated by YTHDF2 reader upregulates hsa-LINC02418 and mmu-4930573I07Rik. In patients with NSCLC, LINC02418 expression is inversely correlated with PD-L1 expression and positively correlated with CD8+T infiltration. CONCLUSION: LINC02418 functions as a negative regulator of PD-L1 expression in NSCLC cells by promoting the degradation of PD-L1 through the ubiquitin-proteasome pathway. The expression of LINC02418 is regulated by METTL3/YTHDF2-mediated m6A modification. This study illuminates the underlying mechanisms of PD-L1 negative regulation and presents a promising target for improving the effectiveness of anti-PD-L1 therapy in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor , Immunotherapy , RNA/metabolism , RNA/therapeutic use , Ubiquitination , Methyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/therapeutic use
5.
Water Res ; 241: 120168, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37290194

ABSTRACT

Membrane aerated biofilm reactor (MABR) has attracted a lot of attention as an energy-efficient integrated nitrogen removing technology in recent years. However, it is lacking of understanding to realize stable partial nitrification in MABR because of its unique oxygen transfer mode and biofilm structure. In this study, free ammonia (FA) and free nitrous acid (FNA) based control strategies for partial nitrification with low NH4+-N concentration were proposed in a MABR of sequencing batch mode. The MABR was operated for over 500 days under different influent NH4+-N concentrations. With the influent NH4+-N of around 200 mg-N/L, partial nitrification could be established with relatively low concentration of FA (0.4-2.2 mg-N/L) which suppressed nitrite oxidizing bacteria (NOB) on the biofilm. With lower influent NH4+-N concentration of around 100 mg-N/L, the FA concentration was lower and strengthened suppression strategies based on FNA were needed. With the final pH of operating cycles below 5.0, the FNA produced in the sequencing batch MABR could stabilize partial nitrification by eliminating NOB on the biofilm. Since the activity of ammonia oxidizing bacteria (AOB) was lower without the blow-off of dissolved carbon dioxide in the bubbleless MABR, longer hydraulic retention time was required to reach a low pH for high concentration of FNA to suppress NOB. After exposures to FNA, the relative abundance of Nitrospira was decreased by 94.6%, while the abundance of Nitrosospira increased greatly which became another dominant AOB genus in addition to Nitrosomonas.


Subject(s)
Ammonia , Nitrous Acid , Ammonia/chemistry , Nitrification , Bioreactors/microbiology , Nitrites , Bacteria , Biofilms , Oxidation-Reduction
6.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240315

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Sirtuin 2/genetics , Sirtuin 2/metabolism , Diet , Lipids , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
7.
Anal Chem ; 95(17): 6989-6995, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37083370

ABSTRACT

Among the various types of post-translational modifications (PTMs), methylation is the simple functionalized one that regulates the functions of proteins and affects interactions of protein-protein and protein-DNA/RNA, which will further influence diverse cellular processes. The methylation modification has only a slight effect on the size and hydrophobicity of proteins or peptides, and it cannot change their net charges at all, so the methods for recognizing methylated protein are still limited. Here, we designed a recognition receptor consisting of a α-hemolysin (α-HL) nanopore and polyamine decorated γ-cyclodextrin (am8γ-CD) to differentiate the methylation of peptide derived from a heterogeneous nuclear ribonucleoprotein at the single molecule level. The results indicate that the modification of a methyl group enhances the interaction between the peptide and the recognition receptor. The results of molecular simulations were consistent with the experiments; the methylated peptide interacts with the receptor strongly due to the more formation of hydrogen bonds. This proposed strategy also can be used to detect PTM in real biological samples and possesses the advantages of low-cost and high sensitivity and is label-free. Furthermore, the success in the construction of this recognition receptor will greatly facilitate the investigation of pathogenesis related to methylated arginine.


Subject(s)
Arginine , Proteins , Arginine/chemistry , Methylation , Proteins/metabolism , RNA/metabolism , Peptides/chemistry , Protein Processing, Post-Translational
8.
Cancer Lett ; 560: 216118, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36871813

ABSTRACT

Radiotherapy has shown measurable efficacy in breast cancer (BC). Elucidating the mechanisms and developing effective strategies against resistance, which is a major challenge, is crucial. Mitochondria, which regulate homeostasis of the redox environment, have emerged as a radiotherapeutic target. However, the mechanism via which mitochondria are controlled under radiation remains elusive. Here, we identified alpha-enolase (ENO1), as a prognostic marker for the efficacy of BC radiotherapy. ENO1 enhances radio-therapeutic resistance in BC via reducing the production of reactive oxygen species (ROS) and apoptosis in vitro and in vivo through modulation of mitochondrial homeostasis. Moreover, LINC00663 was identified as an upstream regulator of ENO1, which regulates radiotherapeutic sensitivity by downregulating ENO1 expression in BC cells. LINC00663 regulates ENO1 protein stability by enhancing the E6AP-mediated ubiquitin-proteasome pathway. In BC patients, LINC00663 expression is negatively correlated with ENO1 expression. Among patients treated with IR, those who did not respond to radiotherapy expressed lower levels of LINC00663 than those sensitive to radiotherapy. Our work established LINC00663/ENO1 critical to regulate IR-resistance in BC. Inhibition of ENO1 with a specific inhibitor or supplement of LINC00663 could be potential sensitizing therapeutic strategies for BC.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Mitochondria/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Biomarkers, Tumor/metabolism , Ubiquitination , Homeostasis , Radiation Tolerance , DNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism
9.
Phys Chem Chem Phys ; 25(11): 7629-7633, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36857696

ABSTRACT

Taking advantage of bipolar electrochemistry and a glass nanopipette, continuous single bubbles can be controlled which are generated and detached from a nanometer-sized area of confined electrochemical catalysts. The observed current oscillations offer opportunities to rapidly collect data for the statistical analysis of single-bubble generation on and departure from the catalysts.

10.
Int J Food Microbiol ; 382: 109929, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36116390

ABSTRACT

The primary seafood-borne pathogen Vibrio parahaemolyticus seriously threats the health of consumers preferring raw-fish products, becoming a global concern in food safety. In the present study, we found ferrous sulfate (FeSO4), a nutritional iron supplement, could efficiently induce the death of V. parahaemolyticus. Further, the bactericidal mechanisms of FeSO4 were explored. With a fluorescent probe of Fe2+, a significant influx of Fe2+ was determined in V. parahaemolyticus exposed to FeSO4, and the addition of an intracellular Fe2+ chelator was able to block the cell death. This suggested that cell death in V. parahaemolyticus induced by FeSO4 was dependent on the influx of Fe2+. It was intriguing that we did not observe the eruption of reactive oxygen species (ROS) and lipid hydroperoxides by Fe2+, but the application of liproxstatin-1 (a ferroptosis inhibitor) significantly modified the occurrence of cell death in V. parahaemolyticus. These results suggested FeSO4-induced cell death in V. parahaemolyticus be a ferroptosis differing from that in mammalian cells. Through transcriptome analysis, it was discovered that the exposure of FeSO4 disturbed considerable amounts of gene expression in V. parahaemolyticus including those involved in protein metabolism, amide biosynthesis, two-component system, amino acid degradation, carbon metabolism, citrate cycle, pyruvate metabolism, oxidative phosphorylation, and so on. These data suggested that FeSO4 was a pleiotropic antimicrobial agent against V. parahaemolyticus. Notably, FeSO4 was able to eliminate V. parahaemolyticus in salmon sashimi as well, without affecting the color, texture, shearing force, and sensory characteristics of salmon sashimi. Taken together, our results deciphered a unique ferroptosis in V. parahaemolyticus by FeSO4, and highlighted its potential in raw-fish products to control V. parahaemolyticus.


Subject(s)
Vibrio parahaemolyticus , Amides/analysis , Amino Acids , Animals , Carbon , Chelating Agents/analysis , Citrates , Ferrous Compounds , Fluorescent Dyes/analysis , Food Contamination/analysis , Iron , Lipids/analysis , Mammals , Pyruvates/analysis , Reactive Oxygen Species/analysis , Salmon , Seafood/analysis , Vibrio parahaemolyticus/genetics
11.
Complement Ther Clin Pract ; 49: 101648, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35994795

ABSTRACT

BACKGROUND: Fatigue, poor sleep quality and poor quality of life (QoL) are recognised as common problems for patients with inflammatory bowel disease (IBD). This study aimed to evaluate feasibility and effect of aromatherapy on these problems in patients with IBD. METHODS: Seventy IBD patients from a tertiary hospital in China were randomly assigned to an intervention group and a control group. During the 8-week intervention, the intervention group received aromatherapy through the skin and by inhalation, and the control group received routine nursing care. All patients were administered questionnaires at two sessions-the Multidimensional Fatigue Inventory, the Inflammatory Bowel Disease Questionnaire and the Pittsburgh Sleep Quality Index-before and after the intervention. The clinical trial registration number is ChiCTR2100045889. RESULTS: Postintervention fatigue and sleep problems were relieved in the intervention group compared with the control group (P < 0.05). Moreover, QoL scores improved significantly in the intervention group (P < 0.05). CONCLUSION: These results suggested that aromatherapy may be an effective complementary treatment method to relieve fatigue and sleep problems and improve quality of life in IBD patients.


Subject(s)
Aromatherapy , Inflammatory Bowel Diseases , Sleep Wake Disorders , Humans , Aromatherapy/methods , Quality of Life , Feasibility Studies , Sleep Quality , Fatigue/etiology , Fatigue/therapy , Sleep , Sleep Wake Disorders/etiology , Sleep Wake Disorders/therapy , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/therapy , Chronic Disease
12.
Front Oncol ; 12: 939605, 2022.
Article in English | MEDLINE | ID: mdl-35875091

ABSTRACT

Purpose: Recently, long noncoding RNA LINC01134 has been shown to reduce cell viability and apoptosis via the antioxidant stress pathway, thereby enhancing OXA resistance in hepatocellular carcinoma. However, the association of LINC01134 with ferroptosis and the underlying molecular mechanisms remain to be elucidated. Methods: Bioinformatics analysis was employed to screen lncRNAs positively correlated with GPX4 and poor clinical prognosis. And Western blot and RT-PCR analysis in HCC cells confirmed the effect of LINC01134 on GPX4 expression. In addition, LINC01134 siRNA was transfected in HCC cells to detect the changes in cell viability, ROS, lipid peroxidation, MDA levels and GSH/GSSG levels. CCK-8, colony formation and apoptosis assays were performed to determine the effect of LINC01134 on cell death. The effect of LINC01134 and OXA on Nrf2 transcriptional binding to GPX4 was analyzed using dual luciferase reporter assay and CHIP. The expression of GPX4 and Nrf2 in HCC tissues was detected by FISH and IHC. Results: LINC01134 is a novel lncRNA positively correlated with GPx4 and associated with poor clinical prognosis. Silenced LINC01134 conferred OXA sensitivity by enhancing total ROS, lipid ROS, MDA levels and decreasing GSH/GSSG ratio. Mechanistically, LINC01134 and OXA could promote Nrf2 recruitment to the GPX4 promoter region to exert transcriptional regulation of GPX4. Clinically, LINC01134 was positively correlated with GPX4 or Nrf2, demonstrating the clinical significance of LINC01134, Nrf2 and GPX4 in OXA resistance of HCC. Conclusions: We identified LINC01134/Nrf2/GPX4 as a novel and critical axis to regulate HCC growth and progression. Targeting GPX4, knocking down LINC01134 or Nrf2 could be a potential therapeutic strategy for HCC.

13.
Int J Biol Sci ; 18(11): 4372-4387, 2022.
Article in English | MEDLINE | ID: mdl-35864964

ABSTRACT

Over the past decades, the incidence of thyroid cancer (TC) rapidly increased all over the world, with the papillary thyroid cancer (PTC) accounting for the vast majority of TC cases. It is crucial to investigate novel diagnostic and therapeutic targets for PTC and explore more detailed molecular mechanisms in the carcinogenesis and progression of PTC. Based on the TCGA and GEO databases, FAM111B is downregulated in PTC tissues and predicts better prognosis in PTC patients. FAM111B suppresses the growth, migration, invasion and glycolysis of PTC both in vitro and in vivo. Furthermore, estrogen inhibits FAM111B expression by DNMT3B methylation via enhancing the recruitment of DNMT3B to FAM111B promoter. DNMT3B-mediated FAM111B methylation accelerates the growth, migration, invasion and glycolysis of PTC cells. In clinical TC patient specimens, the expression of FAM111B is inversely correlated with the expressions of DNMT3B and the glycolytic gene PGK1. Besides, the expression of FAM111B is inversely correlated while DNMT3B is positively correlated with glucose uptake in PTC patients. Our work established E2/DNMT3B/FAM111B as a crucial axis in regulating the growth and progression of PTC. Suppression of DNMT3B or promotion of FAM111B will be potential promising strategies in the estrogen induced PTC.


Subject(s)
Cell Cycle Proteins , DNA (Cytosine-5-)-Methyltransferases , Thyroid Neoplasms , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Estrogens , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Methylation , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , DNA Methyltransferase 3B
14.
J Hazard Mater ; 429: 128358, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35123131

ABSTRACT

Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely detected in wastewater in many countries to track the COVID-19 pandemic development, it is still a lack of clear understanding of the persistence of SARS-CoV-2 in raw sewage, especially after the end of the COVID-19 pandemic event. To fill this knowledge gap, this study conducted a field trial on the SARS-CoV-2 presence in various wastewater facilities after the end of the COVID-19 epidemics in Beijing. The result showed that the wastewater treatment facility is a large SARS-CoV-2 repository. The viral RNA was still present in hospital sewage for 15 days and was continually detected in municipal WWTPs for more than 19 days after the end of the local COVID-19 epidemics. The T90 values of the SARS-CoV-2 RNA in raw wastewater were 17.17-8.42 days in the wastewater at 4 â„ƒ and 26 â„ƒ, respectively, meaning that the decay rates of low titer viruses in raw sewage were much faster. The results confirmed that the SARS-CoV-2 RNA could persist in wastewater for more than two weeks, especially at lower temperatures. The sewage systems would be a virus repository and prolong the presence of the residual SARS-CoV-2 RNA. The study could enhance further understanding of the presence of SARS-CoV-2 RNA in raw wastewater.


Subject(s)
COVID-19 , Wastewater , COVID-19/epidemiology , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics
15.
ACS Omega ; 6(38): 24683-24692, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604650

ABSTRACT

In recent years, the explosion accidents of liquefied petroleum gas (LPG) have induced tremendous losses. To analyze the deflagration danger of LPG, the explosion pressure and flame propagation features of the premixed LPG-air mixture in a closed pipeline at increased initial pressures and temperatures were examined by the numerical method. It has been shown that with an increase in the initial temperature, the highest explosion pressure and explosion induction period decrease, while the maximum flame temperature increases. As the initial temperature rises, the formation of the tulip flame accelerates, and the depression of the flame front increases at the same time. The elevated initial pressure raises the highest explosion pressure and the maximum flame temperature. Nevertheless, when the initial pressure exceeds 0.5 MPa, its impact on the flame temperature slowly diminishes. In addition, the gray relational analysis approach was utilized to evaluate the correlation between the initial condition and the derived parameters. The findings indicate that the initial pressure exerts the largest influence on the four explosion parameters. The research finding is important for exposing the deflagration risk features of LPG under complicated working situations, evaluating the explosion risk of correlated procedures and devices, and formulating scientific and effective explosion-proof measures.

16.
Cell Death Dis ; 12(9): 799, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404767

ABSTRACT

Lactate dehydrogenase A (LDHA), a critical component of the glycolytic pathway, relates to the development of various cancers, including thyroid cancer. However, the regulatory mechanism of LDHA inhibition and the physiological significance of the LDHA inhibitors in papillary thyroid cancer (PTC) are unknown. Long non-coding RNA (lncRNA) plays a vital role in tumor growth and progression. Here, we identified a novel lncRNA LINC00671 negatively correlated with LDHA, downregulating LDHA expression and predicting good clinical outcome in thyroid cancer. Moreover, hypoxia inhibits LINC00671 expression and activates LDHA expression largely through transcriptional factor STAT3. STAT3/LINC00671/LDHA axis regulates thyroid cancer glycolysis, growth, and lung metastasis both in vitro and in vivo. In thyroid cancer patients, LINC00671 expression is negatively correlated with LDHA and STAT3 expression. Our work established STAT3/LINC00671/LDHA as a critical axis to regulate PTC growth and progression. Inhibition of LDHA or STAT3 or supplement of LINC00671 could be potential therapeutic strategies in thyroid cancer.


Subject(s)
Glycolysis/genetics , Lactate Dehydrogenase 5/metabolism , RNA, Long Noncoding/metabolism , STAT3 Transcription Factor/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/secondary , Mice, Nude , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Prognosis , RNA, Long Noncoding/genetics , Tumor Hypoxia
17.
Hepatology ; 74(6): 3213-3234, 2021 12.
Article in English | MEDLINE | ID: mdl-34322883

ABSTRACT

BACKGROUND AND AIMS: Oxaliplatin (OXA) is one of the most common chemotherapeutics in advanced hepatocellular carcinoma (HCC), the resistance of which poses a big challenge. Long noncoding RNAs (lncRNAs) play vital roles in chemoresistance. Therefore, elucidating the underlying mechanisms and identifying predictive lncRNAs for OXA resistance is needed urgently. METHODS: RNA sequencing (RNA-seq) and fluorescence in situ hybridization (FISH) were used to investigate the OXA-resistant (OXA-R) lncRNAs. Survival analysis was performed to determine the clinical significance of homo sapiens long intergenic non-protein-coding RNA 1134 (LINC01134) and p62 expression. Luciferase, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and chromatin isolation by RNA purification (ChIRP) assays were used to explore the mechanisms by which LINC01134 regulates p62 expression. The effects of LINC01134/SP1/p62 axis on OXA resistance were evaluated using cell viability, apoptosis, and mitochondrial function and morphology analysis. Xenografts were used to estimate the in vivo regulation of OXA resistance by LINC01134/SP1/p62 axis. ChIP, cell viability, and xenograft assays were used to identify the demethylase for LINC01134 up-regulation in OXA resistance. RESULTS: LINC01134 was identified as one of the most up-regulated lncRNAs in OXA-R cells. Higher LINC01134 expression predicted poorer OXA therapeutic efficacy. LINC01134 activates anti-oxidative pathway through p62 by recruiting transcription factor SP1 to the p62 promoter. The LINC01134/SP1/p62 axis regulates OXA resistance by altering cell viability, apoptosis, and mitochondrial homeostasis both in vitro and in vivo. Furthermore, the demethylase, lysine specific demethylase 1 (LSD1) was responsible for LINC01134 up-regulation in OXA-R cells. In patients with HCC, LINC01134 expression was positively correlated with p62 and LSD1 expressions, whereas SP1 expression positively correlated with p62 expression. CONCLUSIONS: LSD1/LINC01134/SP1/p62 axis is critical for OXA resistance in HCC. Evaluating LINC01134 expression in HCC will be effective in predicting OXA efficacy. In treatment-naive patients, targeting the LINC01134/SP1/p62 axis may be a promising strategy to overcome OXA chemoresistance.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Histone Demethylases/metabolism , Liver Neoplasms/drug therapy , Oxaliplatin/therapeutic use , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Sp1 Transcription Factor/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Demethylation , Drug Resistance, Neoplasm/genetics , Hep G2 Cells , Humans , Immunoprecipitation , In Situ Hybridization, Fluorescence , Liver Neoplasms/metabolism , Male , Mice , Mice, Nude , Neoplasm Transplantation , Oxidative Stress , RNA, Long Noncoding/genetics , Reactive Oxygen Species/metabolism
18.
Mol Ther ; 29(9): 2737-2753, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33940159

ABSTRACT

Phosphoglycerate kinase 1 (PGK1), a critical component of the glycolytic pathway, relates to the development of various cancers. However, the mechanisms of PGK1 inhibition and physiological significance of PGK1 inhibitors in cancer cells are unclear. Long non-coding RNAs (lncRNAs) play a vital role in tumor growth and progression. Here, we identify a lncRNA LINC00926 that negatively regulates PGK1 expression and predicts good clinical outcome of breast cancer. LINC00926 downregulates PGK1 expression through the enhancement of PGK1 ubiquitination mediated by E3 ligase STUB1. Moreover, hypoxia inhibits LINC00926 expression and activates PGK1 expression largely through FOXO3A. FOXO3A/LINC00926/PGK1 axis regulates breast cancer glycolysis, tumor growth, and lung metastasis both in vitro and in vivo. In breast cancer patients, LINC00926 expression is negatively correlated with PGK1 and positively correlated with FOXO3A expression. Our work established FOXO3A/LINC00926/PGK1 as a critical axis to regulate breast cancer growth and progression. Targeting PGK1 or supplement of LINC00926 or FOXO3A could be potential therapeutic strategies in breast cancer.


Subject(s)
Breast Neoplasms/pathology , Forkhead Box Protein O3/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Phosphoglycerate Kinase/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MCF-7 Cells , Mice , Middle Aged , Neoplasm Metastasis , Neoplasm Transplantation , Phosphorylation , Prognosis , Signal Transduction , Warburg Effect, Oncologic
19.
Anal Chem ; 93(18): 7118-7124, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33905222

ABSTRACT

NADH/NAD+ is pivotal to fundamental biochemistry research and molecular diagnosis, but recognition and detection for them are a big challenge at the single-molecule level. Inspired by the biological system, here, we designed and synthesized a biomimetic NAD+/NADH molecular clamp (MC), octakis-(6-amino-6-deoxy)-γ-cyclomaltooctaose, and harbored in the engineered α-HL(M113R)7 nanopore, forming a novel single-molecule biosensor. The single-molecule measurement possesses high selectivity and a high signal-to-noise ratio, allowing to simultaneously recognize and detect for sensing NADH/NAD+ and their transformations.


Subject(s)
Biosensing Techniques , Nanopores , Biomimetics , NAD , Nanotechnology
20.
Onco Targets Ther ; 13: 10515-10523, 2020.
Article in English | MEDLINE | ID: mdl-33116630

ABSTRACT

BACKGROUND: Renal cell cancer (RCC) is one of the most lethal malignancies of the kidney in adults. mTOR (mammalian target of rapamycin) signaling pathway plays a pivotal role in RCC tumorigenesis and progression and inhibitors targeting the mTOR pathway have been widely used in advanced RCC treatment. Therefore, it is of great significance to explore the potential regulators of the mTOR pathway as RCC therapeutic targets. MATERIALS AND METHODS: Bioinformatics analysis was used to screen out the most significant differentially expressed genes in the RCC dataset of The Cancer Genome Atlas (TCGA). Real-time PCR and Western-blot analysis were utilized to examine the expression of inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) in four RCC cell lines and one human embryonic kidney cell line. Cell counting Kit-8 and colony formation assay were performed to estimate the effect of ITPKA on the proliferation ability of RCC cells. Wound healing and Transwell assays were used to test the effect of ITPKA on RCC cell migration and invasion. Xenograft formation assay was performed in nude mice to investigate the effect of ITPKA in vivo. mTORC1 pathway inhibitor was added to explore the mechanisms by which ITPKA regulates RCC cell growth and progression. RESULTS: Based on bioinformatics analysis, ITPKA is screened out as one of the most significant differentially expressed genes in RCC. ITPKA is upregulated and positively correlated with RCC malignancy and poorer prognosis. ITPKA promotes RCC growth, migration and invasion in cultured cells, and accelerates tumor growth in nude mice. Mechanistically, ITPKA stimulates the mTORC1 signaling pathway which is a requirement for ITPKA modulation of RCC cell proliferation, migration and invasion. CONCLUSION: Our data demonstrate a critical regulatory role of the ITPKA in RCC and suggest that ITPKA/mTORC1 axis may be a promising target for diagnosis and treatment of RCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...