Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202409563, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949085

ABSTRACT

Regulating the binding effect between the surface of an electrode material and reaction intermediates is essential in highly efficient CO2 electro-reduction to produce high-value multicarbon (C2+) compounds. Theoretical study reveals that lattice tensile strain in single-component Cu catalysts can reduce the dipole-dipole repulsion between *CO intermediates and promotes *OH adsorption, and the high *CO and *OH coverage decreases the energy barrier for C-C coupling. In this work, Cu catalysts with varying lattice tensile strain were fabricated by electro-reducing CuO precursors with different crystallinity, without adding any extra components. The as-prepared single-component Cu catalysts were used for CO2 electro-reduction, and it is discovered that the lattice tensile strain in Cu could enhance the Faradaic efficiency (FE) of C2+ products effectively. Especially, the as-prepared CuTPA catalyst with high lattice tensile strain achieves a FEC2+ of 90.9% at -1.25 V vs. RHE with a partial current density of 486.1 mA cm-2.

2.
Chem Sci ; 15(26): 9949-9976, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966383

ABSTRACT

Electrocatalysis stands out as a promising avenue for synthesizing high-value products with minimal environmental footprint, aligning with the imperative for sustainable energy solutions. Deep eutectic solvents (DESs), renowned for their eco-friendly, safe, and cost-effective nature, present myriad advantages, including extensive opportunities for material innovation and utilization as reaction media in electrocatalysis. This review initiates with an exposition on the distinctive features of DESs, progressing to explore their applications as solvents in electrocatalyst synthesis and electrocatalysis. Additionally, it offers an insightful analysis of the challenges and prospects inherent in electrocatalysis within DESs. By delving into these aspects comprehensively, this review aims to furnish a nuanced understanding of DESs, thus broadening their horizons in the realm of electrocatalysis and facilitating their expanded application.

3.
Angew Chem Int Ed Engl ; : e202410145, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979674

ABSTRACT

Tuning the selectivity of CO2 electroreduction reaction (CO2RR) solely by changing electrolyte is a very attractive topic. In this study, we conducted CO2RR in different aqueous electrolytes over bulk metal electrodes. It was discovered that controlled CO2RR could be achieved by modulating cations in the electrochemical double layer. Specifically, ionic liquid cations in the electrolyte significantly inhibits the hydrogen evolution reaction (HER), while yielding high Faraday efficiencies toward CO (FECO) or formate (FEformate) depending on the alkali metal cations. For example, the product could be switched from CO (FECO = 97.3%) to formate (FEformate = 93.5%) by changing the electrolyte from 0.1 M KBr-0.5 M 1-octyl-3-methylimidazolium bromide (OmimBr) to 0.1 M CsBr-0.5M OmimBr aqueous solutions over pristine Cu foil electrode. In situ spectroscopy and theoretical calculations reveal that the ordered structure generated by the assembly of Omim+ under an applied negative potential alters the hydrogen bonding structure of the interfacial water, thereby inhibiting the HER. The difference in selectivity in the presence of different cations is attributed to the hydrogen bonding effect caused by Omim+, which alters the solvated structure of the alkali metal cations and thus affects the stabilization of intermediates of different pathways.

4.
Nat Commun ; 15(1): 4821, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844773

ABSTRACT

Achieving satisfactory multi-carbon (C2+) products selectivity and current density under acidic condition is a key issue for practical application of electrochemical CO2 reduction reaction (CO2RR), but is challenging. Herein, we demonstrate that combining microenvironment modulation by porous channel structure and intrinsic catalytic activity enhancement via doping effect could promote efficient CO2RR toward C2+ products in acidic electrolyte (pH ≤ 1). The La-doped Cu hollow sphere with channels exhibits a C2+ products Faradaic efficiency (FE) of 86.2% with a partial current density of -775.8 mA cm-2. CO2 single-pass conversion efficiency for C2+ products can reach 52.8% at -900 mA cm-2. Moreover, the catalyst still maintains a high C2+ FE of 81.3% at -1 A cm-2. The channel structure plays a crucial role in accumulating K+ and OH- species near the catalyst surface and within the channels, which effectively suppresses the undesired hydrogen evolution and promotes C-C coupling. Additionally, the La doping enhances the generation of *CO intermediate, and also facilitates C2+ products formation.

5.
J Am Chem Soc ; 146(23): 15917-15925, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805725

ABSTRACT

Cu-based catalysts are optimal for the electroreduction of CO2 to generate hydrocarbon products. However, controlling product distribution remains a challenging topic. The theoretical investigations have revealed that the coordination number (CN) of Cu considerably influences the adsorption energy of *CO intermediates, thereby affecting the reaction pathway. Cu catalysts with different CNs were fabricated by reducing CuO precursors via cyclic voltammetry (Cyc-Cu), potentiostatic electrolysis (Pot-Cu), and pulsed electrolysis (Pul-Cu), respectively. High-CN Cu catalysts predominantly generate C2+ products, while low-CN Cu favors CH4 production. For instance, over the high-CN Pot-Cu, C2+ is the main product, with the Faradaic efficiency (FE) reaching 82.5% and a partial current density (j) of 514.3 mA cm-2. Conversely, the low-CN Pul(3)-Cu favors the production of CH4, achieving the highest FECH4 value of 56.7% with a jCH4 value of 234.4 mA cm-2. In situ X-ray absorption spectroscopy and Raman spectroscopy studies further confirm the different *CO adsorptions over Cu catalysts with different CN, thereby directing the reaction pathway of the CO2RR.

6.
J Am Chem Soc ; 146(15): 10934-10942, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581437

ABSTRACT

Hydroxylamine (HA, NH2OH) is a critical feedstock in the production of various chemicals and materials, and its efficient and sustainable synthesis is of great importance. Electroreduction of nitrate on Cu-based catalysts has emerged as a promising approach for green ammonia (NH3) production, but the electrosynthesis of HA remains challenging due to overreduction of HA to NH3. Herein, we report the first work on ketone-mediated HA synthesis using nitrate in water. A metal-organic-framework-derived Cu catalyst was developed to catalyze the reaction. Cyclopentanone (CP) was used to capture HA in situ to form CP oxime (CP-O) with C═N bonds, which is prone to hydrolysis. HA could be released easily after electrolysis, and CP was regenerated. It was demonstrated that CP-O could be formed with an excellent Faradaic efficiency of 47.8%, a corresponding formation rate of 34.9 mg h-1 cm-2, and a remarkable carbon selectivity of >99.9%. The hydrolysis of CP-O to release HA and CP regeneration was also optimized, resulting in 96.1 mmol L-1 of HA stabilized in the solution, which was significantly higher than direct nitrate reduction. Detailed in situ characterizations, control experiments, and theoretical calculations revealed the catalyst surface reconstruction and reaction mechanism, which showed that the coexistence of Cu0 and Cu+ facilitated the protonation and reduction of *NO2 and *NH2OH desorption, leading to the enhancement for HA production.

7.
Chem Sci ; 15(9): 3233-3239, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425518

ABSTRACT

Urea electrosynthesis under ambient conditions is emerging as a promising alternative to conventional synthetic protocols. However, the weak binding of reactants/intermediates on the catalyst surface induces multiple competing pathways, hindering efficient urea production. Herein, we report the synthesis of defective Co3O4 catalysts that integrate dual-functional sites for urea production from CO2 and nitrite. Regulating the reactant adsorption capacity on defective Co3O4 catalysts can efficiently control the competing reaction pathways. The urea yield rate of 3361 mg h-1 gcat-1 was achieved with a corresponding faradaic efficiency (FE) of 26.3% and 100% carbon selectivity at a potential of -0.7 V vs. the reversible hydrogen electrode. Both experimental and theoretical investigations reveal that the introduction of oxygen vacancies efficiently triggers the formation of well-matched adsorption/activation sites, optimizing the adsorption of reactants/intermediates while decreasing the C-N coupling reaction energy. This work offers new insights into the development of dual-functional catalysts based on non-noble transition metal oxides with oxygen vacancies, enabling the efficient electrosynthesis of essential C-N fine chemicals.

8.
J Am Chem Soc ; 146(14): 10084-10092, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38530325

ABSTRACT

Glycine is a nonessential amino acid that plays a vital role in various biological activities. However, the conventional synthesis of glycine requires sophisticated procedures or toxic feedstocks. Herein, we report an electrochemical pathway for glycine synthesis via the reductive coupling of oxalic acid and nitrate or nitrogen oxides over atomically dispersed Fe-N-C catalysts. A glycine selectivity of 70.7% is achieved over Fe-N-C-700 at -1.0 V versus RHE. Synergy between the FeN3C structure and pyrrolic nitrogen in Fe-N-C-700 facilitates the reduction of oxalic acid to glyoxylic acid, which is crucial for producing glyoxylic acid oxime and glycine, and the FeN3C structure could reduce the energy barrier of *HOOCCH2NH2 intermediate formation thus accelerating the glyoxylic acid oxime conversion to glycine. This new synthesis approach for value-added chemicals using simple carbon and nitrogen sources could provide sustainable routes for organonitrogen compound production.

9.
Angew Chem Int Ed Engl ; 63(9): e202315822, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38081787

ABSTRACT

Electroreduction of CO2 into valuable chemicals and fuels is a promising strategy to mitigate energy and environmental problems. However, it usually suffers from unsatisfactory selectivity for a single product and inadequate electrochemical stability. Herein, we report the first work to use cationic Gemini surfactants as modifiers to boost CO2 electroreduction to formate. The selectivity, activity and stability of the catalysts can be all significantly enhanced by Gemini surfactant modification. The Faradaic efficiency (FE) of formate could reach up to 96 %, and the energy efficiency (EE) could achieve 71 % over the Gemini surfactants modified Cu electrode. In addition, the Gemini surfactants modified commercial Bi2 O3 nanosheets also showed an excellent catalytic performance, and the FE of formate reached 91 % with a current density of 510 mA cm-2 using the flow cell. Detailed studies demonstrated that the double quaternary ammonium cations and alkyl chains of the Gemini surfactants played a crucial role in boosting electroreduction CO2 , which can not only stabilize the key intermediate HCOO* but also provide an easy access for CO2 . These observations could shine light on the rational design of organic modifiers for promoted CO2 electroreduction.

10.
ChemSusChem ; 17(7): e202301539, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38109070

ABSTRACT

Electrochemical CO2 reduction presents a promising approach for synthesizing fuels and chemical feedstocks using renewable energy sources. Although significant advancements have been made in the design of catalysts for CO2 reduction reaction (CO2RR) in recent years, the linear scaling relationship of key intermediates, selectivity, stability, and economical efficiency are still required to be improved. Rare earth (RE) elements, recognized as pivotal components in various industrial applications, have been widely used in catalysis due to their unique properties such as redox characteristics, orbital structure, oxygen affinity, large ion radius, and electronic configuration. Furthermore, RE elements could effectively modulate the adsorption strength of intermediates and provide abundant metal active sites for CO2RR. Despite their potential, there is still a shortage of comprehensive and systematic analysis of RE elements employed in the design of electrocatalysts of CO2RR. Therefore, the current approaches for the design of RE element-based electrocatalysts and their applications in CO2RR are thoroughly summarized in this review. The review starts by outlining the characteristics of CO2RR and RE elements, followed by a summary of design strategies and synthetic methods for RE element-based electrocatalysts. Finally, an overview of current limitations in research and an outline of the prospects for future investigations are proposed.

11.
Chem Sci ; 14(45): 13198-13204, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38023492

ABSTRACT

Direct fixation of N2 to N-containing value-added chemicals is a promising pathway for sustainable chemical manufacturing. There is extensive demand for cyclohexanone oxime because it is the essential feedstock of Nylon 6. Currently, cyclohexanone oxime is synthesized under harsh conditions that consume a considerable amount of energy. Herein, we report a novel approach to synthesize cyclohexanone oxime by in situ NO3- generation from air under ambient conditions. This process was carried out through an integrated strategy including plasma-assisted air-to-NOx and co-electrolysis of NOx and cyclohexanone. A high rate of cyclohexanone oxime formation at 20.1 mg h-1 cm-2 and a corresponding faradaic efficiency (FE) of 51.4% was achieved over a Cu/TiO2 catalyst, and the selectivity of cyclohexanone oxime was >99.9% on the basis of cyclohexanone. The C-N bond formation mechanism was examined by in situ experiments and theoretical calculations, which showed that cyclohexanone oxime forms through the reaction between an NH2OH intermediate and cyclohexanone.

12.
J Am Chem Soc ; 145(42): 23037-23047, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37820314

ABSTRACT

Rational regulation of the reaction pathway to produce the desired products is one of the most significant challenges in the electrochemical CO2 reduction reaction (CO2RR). Herein, we designed a series of rare-earth Cu catalysts with mixed phases. It was found that the products could be switched from C2+ to CH4 by tuning the composition and structure of the catalysts. Particularly at the Cu/Sm atomic ratio of 9/1 (Cu9Sm1-Ox), the Faradaic efficiency (FE) for C2+ products (FEC2+) could reach 81% at 700 mA cm-2 with negligible CH4. However, the FE of CH4 (FECH4) was 65% at 500 mA cm-2 over Cu1Sm9-Ox (Cu/Sm = 1/9), and the FEC2+ was extremely low. Experiments and theoretical studies indicated that the stable CuSm2O4 phase existed in all the catalysts within the Cu/Sm range of 9/1 to 1/9. At a high Cu content, the catalyst was composed of CuSm2O4 and Cu phases. The small amount of Sm could enhance the binding strength of *CO and facilitate C-C coupling. Conversely, at a high Sm content, the catalyst was composed of CuSm2O4 and Sm2O3 phases. Sm could effectively stabilize bivalent Cu and enrich proton donors, lowering the reaction energy of *CO for deep hydrogenation to generate CH4. In both pathways, the stable CuSm2O4 phase could cooperate with the Cu or Sm2O3 phases, which induced the formation of different microenvironments to generate different products. This strategy also had commonality with other Cu-rare-earth (La, Pr, and Eu) catalysts to boost the CO2RR for C2+ or CH4 production.

13.
J Am Chem Soc ; 145(44): 23905-23909, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37890007

ABSTRACT

Selective oxidation of benzylic C-H to benzylic alcohols is a well-known challenge in the chemical community since benzylic C-H is more prone to be overoxidized to benzylic ketones. In this work, we report the highly selective electro-oxidation of benzylic C-H to benzylic alcohols in an undivided cell in ionic liquid-based solution. As an example, the selectivity toward xanthydrol could be as high as 95.7% at complete conversion of xanthene, a typical benzylic C-H compound, on gram-scale in imidazolium bromide/H2O/DMF. Mechanism investigation reveals that the imidazolium radical generated in situ participants in a proton-coupled electron transfer process and low-barrier hydrogen bonds stabilize the reaction intermediates, together steering the redox equilibrium, favoring benzylic alcohols over benzylic ketones.

14.
Sci Bull (Beijing) ; 68(20): 2362-2369, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37657973

ABSTRACT

Efficient electrode design is crucial for the electrochemical reduction of CO2 to produce valuable chemicals. The solution used for the preparation of electrodes can affect their overall properties, which in turn determine the reaction efficiency. In this work, we report that transition metal salts could induce the change of two-phase ionic liquid/ethanol mixture into miscible one phase. Pre-phase separation region near the phase boundary of the ternary system was observed. Zinc nanoparticles were electro-deposited along the fibres of carbon paper (CP) substrate uniformly in the salt-induced pre-phase separation region solution. The as-prepared Zn(1)/CP electrode exhibits super-wettability to the electrolyte, rendering very high catalytic performance for CO2 electro-reduction, and the Faradaic efficiency towards CO is 97.6% with a current density of 340 mA cm-2, which is the best result to date in an H-type cell.

15.
Angew Chem Int Ed Engl ; 62(43): e202307952, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37665252

ABSTRACT

The renewable-energy-powered electroreduction of nitrate (NO3 - ) to ammonia (NH3 ) has garnered significant interest as an eco-friendly and promising substitute for the Haber-Bosch process. However, the sluggish kinetics hinders its application at a large scale. Herein, we first calculated the N-containing species (*NO3 and *NO2 ) binding energy and the free energy of the hydrogen evolution reaction over Cu with different metal dopants, and it was shown that Zn was a promising candidate. Based on the theoretical study, we designed and synthesized Zn-doped Cu nanosheets, and the as-prepared catalysts demonstrated excellent performance in NO3 - -to-NH3 . The maximum Faradaic efficiency (FE) of NH3 could reach 98.4 % with an outstanding yield rate of 5.8 mol g-1 h-1 , which is among the best results up to date. The catalyst also had excellent cycling stability. Meanwhile, it also presented a FE exceeding 90 % across a wide potential range and NO3 - concentration range. Detailed experimental and theoretical studies revealed that the Zn doping could modulate intermediates adsorption strength, enhance NO2 - conversion, change the *NO adsorption configuration to a bridge adsorption, and decrease the energy barrier, leading to the excellent catalytic performance for NO3 - -to-NH3 .

16.
J Am Chem Soc ; 145(40): 21945-21954, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37751566

ABSTRACT

Cu-based electrocatalysts have great potential for facilitating CO2 reduction to produce energy-intensive fuels and chemicals. However, it remains challenging to obtain high product selectivity due to the inevitable strong competition among various pathways. Here, we propose a strategy to regulate the adsorption of oxygen-associated active species on Cu by introducing an oxophilic metal, which can effectively improve the selectivity of C2+ alcohols. Theoretical calculations manifested that doping of Lewis acid metal Al into Cu can affect the C-O bond and Cu-C bond breaking toward the selectively determining intermediate (shared by ethanol and ethylene), thus prioritizing the ethanol pathway. Experimentally, the Al-doped Cu catalyst exhibited an outstanding C2+ Faradaic efficiency (FE) of 84.5% with remarkable stability. In particular, the C2+ alcohol FE could reach 55.2% with a partial current density of 354.2 mA cm-2 and a formation rate of 1066.8 µmol cm-2 h-1. A detailed experimental study revealed that Al doping improved the adsorption strength of active oxygen species on the Cu surface and stabilized the key intermediate *OC2H5, leading to high selectivity toward ethanol. Further investigation showed that this strategy could also be extended to other Lewis acid metals.

17.
Angew Chem Int Ed Engl ; 62(36): e202307612, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37469100

ABSTRACT

Realizing industrial-scale production of HCOOH from the CO2 reduction reaction (CO2 RR) is very important, but the current density as well as the electrochemical potential window are still limited to date. Herein, we achieved this by integration of chemical adsorption and electrocatalytic capabilities for the CO2 RR via anchoring In nanoparticles (NPs) on biomass-derived substrates to create In/X-C (X=N, P, B) bifunctional active centers. The In NPs/chitosan-derived N-doped defective graphene (In/N-dG) catalyst had outstanding performance for the CO2 RR with a nearly 100 % Faradaic efficiency (FE) of HCOOH across a wide potential window. Particularly, at 1.2 A ⋅ cm-2 high current density, the FE of HCOOH was as high as 96.0 %, and the reduction potential was as low as -1.17 V vs RHE. When using a membrane electrode assembly (MEA), a pure HCOOH solution could be obtained at the cathode without further separation and purification. The FE of HCOOH was still up to 93.3 % at 0.52 A ⋅ cm-2 , and the HCOOH production rate could reach 9.051 mmol ⋅ h-1 ⋅ cm-2 . Our results suggested that the defects and multilayer structure in In/N-dG could not only enhance CO2 chemical adsorption capability, but also trigger the formation of an electron-rich catalytic environment around In sites to promote the generation of HCOOH.

18.
J Am Chem Soc ; 145(21): 11512-11517, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37196054

ABSTRACT

Using bulk metals as catalysts to get high efficiency in electro-reduction of CO2 is ideal but challenging. Here, we report the coupling of bulk metal electrodes and a ternary ionic-liquid-based electrolyte, 1-butyl-3-methylimidazolium tetrafluoroborate/1-dodecyl-3-methylimidazolium tetrafluoroborate/MeCN to realize highly efficient electro-reduction of CO2 to CO. Over various bulk metal electrodes, the ternary electrolyte not only increases the current density but also suppresses the hydrogen evolution reaction to obtain a high Faradaic efficiency (FE) toward CO. FECO could maintain ∼100% over a wide potential range, and metal electrodes showed very high stability in the ternary electrolyte. It is demonstrated that the aggregation behavior of the ternary electrolyte and the arrangement of two kinds of IL cations with different chain lengths in the electrochemical double layer not only increase the wettability to electrode and CO2 adsorption but also extend the diffusion channel of H+, rendering the high current density and FECO.

19.
J Am Chem Soc ; 145(17): 9857-9866, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37092347

ABSTRACT

Cu is a promising electrocatalyst in CO2 reduction reaction (CO2RR) to high-value C2+ products. However, as important C-C coupling active sites, the Cu+ species is usually unstable under reduction conditions. How atomic dopants affect the performance of Cu-based catalysts is interesting to be studied. Herein, we first calculated the difference between the thermodynamic limiting potentials of CO2RR and the hydrogen evolution reaction, as well as the *CO binding energy over Cu2O doped with different metals, and the results indicated that doping atomic Gd into Cu2O could improve the performance of the catalyst effectively. On the basis of the theoretical study, we designed Gd1/CuOx catalysts. The distinctive electronic structure and large ion radii of Gd not only keep the Cu+ species stable during the reaction but also induce tensile strain in Gd1/CuOx, resulting in excellent performance of the catalysts for electroreduction of CO2 to C2+ products. The Faradic efficiency of C2+ products could reach 81.4% with a C2+ product partial current density of 444.3 mA cm-2 at -0.8 V vs a reversible hydrogen electrode. Detailed experimental and theoretical studies revealed that Gd doping enhanced CO2 activation on the catalyst, stabilized the key intermediate O*CCO, and reduced the energy barrier of the C-C coupling reaction.

20.
J Am Chem Soc ; 145(8): 4675-4682, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36800322

ABSTRACT

Large-current electrolysis of CO2 to multi-carbon (C2+) products is critical to realize the industrial application of CO2 conversion. However, the poor binding strength of *CO intermediates on the catalyst surface induces multiple competing pathways, which hinder the C2+ production. Herein, we report that p-d orbital hybridization induced by Ga-doped Cu (CuGa) could promote efficient CO2 electrocatalysis to C2+ products at ampere-level current density. It was found that CuGa exhibited the highest C2+ productivity with a remarkable Faradaic efficiency (FE) of 81.5% at a current density of 0.9 A/cm2, and the potential at such a high current density was -1.07 V versus reversible hydrogen electrode. At 1.1 A/cm2, the catalyst still maintained a high C2+ productivity with an FE of 76.9%. Experimental and theoretical studies indicated that the excellent performance of CuGa results from the p-d hybridization of Cu and Ga, which not only enriches reactive sites but also enhances the binding strength of the *CO intermediate and facilitates C-C coupling. The p-d hybridization strategy can be extended to other p-block metal-doped Cu catalysts, such as CuAl and CuGe, to boost CO2 electroreduction for C2+ production. As far as we know, this is the first work to promote electrochemical CO2 reduction reaction to generate the C2+ product by p-d orbital hybridization interaction using a p-block metal-doped Cu catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...