Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Angew Chem Int Ed Engl ; : e202403473, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829678

ABSTRACT

Covalent polymerization of organic molecules into crystalline one-dimensional (1D) polymers is effective for achieving desired thermal, optical, and electrical properties, yet it remains a persistent synthetic challenge for their inherent tendency to adopt amorphous or semicrystalline phases. Here we report a strategy to synthesize crystaline 1D covalent organic frameworks (COFs) composing quasi-conjugated chains with benzoxazine linkages via the one-pot Mannich reaction. Through [4+2] and [2+2] type Mannich condensation reactions, we fabricated stoichiometric and sub-stoichiometric 1D covalent polymeric chains, respectively, using doubly and singly-linked benzoxazine ring. The validity of their crystal structures has been directly visualized through the state-of-the-art cryogenic low-dose electron microscopy techniques. Post-synthetic functionalizations of them with a chiral MacMillan catalyst produce crystaline organic photocatalysts that demonstrated excellent catalytic and recyclable performance in light-driven asymmetric alkylation of aldehydes, affording up to 94% enantiomeric excess.

2.
ACS Nano ; 18(21): 13939-13949, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38749923

ABSTRACT

The structure tuning of bulk graphitic carbon nitride (g-C3N4) is a critical way to promote the charge carriers dynamics for enhancing photocatalytic H2-evolution activity. Exploring feasible post-treatment strategies can lead to effective structure tuning, but it still remains a great challenge. Herein, a supercritical CH3OH (ScMeOH) post-treatment strategy (250-300 °C, 8.1-11.8 MPa) is developed for the structure tuning of bulk g-C3N4. This strategy presented advantages of time-saving (less than 10 min), high yield (over 80%), and scalability due to the enhanced mass transfer and high reactivity of ScMeOH. During the ScMeOH post-treatment process, CH3OH molecules diffused into the interlayers of g-C3N4 and subsequently participated in N-methylation and hydroxylation reactions with the intralayers, resulting in a partial phase transformation from g-C3N4 into carbon nitride with a poly(heptazine imide)-like structure (Q-PHI) as well as abundant methyl and hydroxyl groups. The modified g-C3N4 showed enhanced photocatalytic activity with an H2-evolution rate 7.2 times that of pristine g-C3N4, which was attributed to the synergistic effects of the g-C3N4/Q-PHI isotype heterojunction construction, group modulation, and surface area increase. This work presents a post-treatment strategy for structure tuning of bulk g-C3N4 and serves as a case for the application of supercritical fluid technology in photocatalyst synthesis.

3.
Front Cell Dev Biol ; 12: 1361943, 2024.
Article in English | MEDLINE | ID: mdl-38752196

ABSTRACT

Hematopoiesis continues throughout life to produce all types of blood cells from hematopoietic stem cells (HSCs). Metabolic state is a known regulator of HSC self-renewal and differentiation, but whether and how metabolic sensor O-GlcNAcylation, which can be modulated via an inhibition of its cycling enzymes O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT), contributes to hematopoiesis remains largely unknown. Herein, isogenic, single-cell clones of OGA-depleted (OGAi) and OGT-depleted (OGTi) human induced pluripotent stem cells (hiPSCs) were successfully generated from the master hiPSC line MUSIi012-A, which were reprogrammed from CD34+ hematopoietic stem/progenitor cells (HSPCs) containing epigenetic memory. The established OGAi and OGTi hiPSCs exhibiting an increase or decrease in cellular O-GlcNAcylation concomitant with their loss of OGA and OGT, respectively, appeared normal in phenotype and karyotype, and retained pluripotency, although they may favor differentiation toward certain germ lineages. Upon hematopoietic differentiation through mesoderm induction and endothelial-to-hematopoietic transition, we found that OGA inhibition accelerates hiPSC commitment toward HSPCs and that disruption of O-GlcNAc homeostasis affects their commitment toward erythroid lineage. The differentiated HSPCs from all groups were capable of giving rise to all hematopoietic progenitors, thus confirming their functional characteristics. Altogether, the established single-cell clones of OGTi and OGAi hiPSCs represent a valuable platform for further dissecting the roles of O-GlcNAcylation in blood cell development at various stages and lineages of blood cells. The incomplete knockout of OGA and OGT in these hiPSCs makes them susceptible to additional manipulation, i.e., by small molecules, allowing the molecular dynamics studies of O-GlcNAcylation.

4.
Gut ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38744443

ABSTRACT

OBJECTIVE: Squalene epoxidase (SQLE) promotes metabolic dysfunction-associated steatohepatitis-associated hepatocellular carcinoma (MASH-HCC), but its role in modulating the tumour immune microenvironment in MASH-HCC remains unclear. DESIGN: We established hepatocyte-specific Sqle transgenic (tg) and knockout mice, which were subjected to a choline-deficient high-fat diet plus diethylnitrosamine to induce MASH-HCC. SQLE function was also determined in orthotopic and humanised mice. Immune landscape alterations of MASH-HCC mediated by SQLE were profiled by single-cell RNA sequencing and flow cytometry. RESULTS: Hepatocyte-specific Sqle tg mice exhibited a marked increase in MASH-HCC burden compared with wild-type littermates, together with decreased tumour-infiltrating functional IFN-γ+ and Granzyme B+ CD8+ T cells while enriching Arg-1+ myeloid-derived suppressor cells (MDSCs). Conversely, hepatocyte-specific Sqle knockout suppressed tumour growth with increased cytotoxic CD8+ T cells and reduced Arg-1+ MDSCs, inferring that SQLE promotes immunosuppression in MASH-HCC. Mechanistically, SQLE-driven cholesterol accumulation in tumour microenvironment underlies its effect on CD8+ T cells and MDSCs. SQLE and its metabolite, cholesterol, impaired CD8+ T cell activity by inducing mitochondrial dysfunction. Cholesterol depletion in vitro abolished the effect of SQLE-overexpressing MASH-HCC cell supernatant on CD8+ T cell suppression and MDSC activation, whereas cholesterol supplementation had contrasting functions on CD8+ T cells and MDSCs treated with SQLE-knockout supernatant. Targeting SQLE with genetic ablation or pharmacological inhibitor, terbinafine, rescued the efficacy of anti-PD-1 treatment in MASH-HCC models. CONCLUSION: SQLE induces an impaired antitumour response in MASH-HCC via attenuating CD8+ T cell function and augmenting immunosuppressive MDSCs. SQLE is a promising target in boosting anti-PD-1 immunotherapy for MASH-HCC.

5.
J Colloid Interface Sci ; 671: 621-630, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38820846

ABSTRACT

Lithium (Li) metal anodes (LMAs) are regarded as leading technology for advanced-generation batteries due to their high theoretical capacity and favorable redox potential. However, the practical integration of LMAs into high-energy rechargeable batteries is hindered by the challenge of Li dendrite growth. In this work, nanoparticles of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) loaded with Ce(OH)3 (LLZTCO) were designed and synthesized by a hydrothermal method. A functional composite separator was crafted by coating one side of a polypropylene (PP) separator with a composite electrolyte comprised of polyvinylidene fluoride (PVDF) and LLZTCO. The synergistic interactions between PVDF and LLZTCO provide numerous rapid lithium-ion (Li+) channels, facilitating the efficient redistribution of disparate Li+ flux originating from the insulated PP separator. The composite separator demonstrated an ionic conductivity (σ) of 3.68 × 10-3 S cm-1, substantial Li+ transference number (t+) of 0.73, and a high electrochemical window of 4.8 V at 25℃. Furthermore, the Li/LLZTCO@PP/Li symmetric cells demonstrated stable cycling for over 2000 h without significant dendrite formation. The Li/LiFePO4 (LFP) cells assembled with LLZTCO@PP separators exhibited a capacity retention of 91.6 % after 400 cycles at 1C. This study offers a practical approach to fabricating composite separators with enhanced safety and superior electrochemical performance.

6.
ACS Appl Mater Interfaces ; 16(21): 27831-27840, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757708

ABSTRACT

Electro-optical synergy has recently been targeted to improve the separation of hot carriers and thereby further improve the efficiency of plasmon-mediated chemical reactions (PMCRs). However, the electro-optical synergy in PMCRs needs to be more deeply understood, and its contribution to bond dissociation and product selectivity needs to be clarified. Herein, the electro-optical synergy in plasmon-mediated reduction of p-bromothiophenol (PBTP) was studied on a plasmonic nanostructured silver electrode using in situ Raman spectroscopy and theoretical calculations. It was found that the electro-optical synergy-induced enhancements in the cleavage of carbon-bromine bonds, reaction rate, and product selectivity (4,4'-biphenyl dithiol vs thiophenol) were largely affected by the applied bias, laser wavelength, and laser power. The theoretical simulation further clarified that the strong electro-optical synergy is attributed to the matching of energy band diagrams of the plasmonic silver with those of the adsorbed PBTP molecules. A deep understanding of the electro-optical synergy in PBTP reduction and the clarification of the mechanism will be highly beneficial for the development of other highly efficient PMCRs.

7.
Cell Rep Med ; 5(4): 101478, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631285

ABSTRACT

Immunotherapy has emerged as a robust approach against cancer, yet its efficacy has varied among individuals, accompanied by the occurrence of immune-related adverse events. As a result, the efficacy of immunotherapy is far from satisfactory, and enormous efforts have been invested to develop strategies to improve patient outcomes. The gut microbiome is now well acknowledged for its critical role in immunotherapy, with better understanding on host-microbes interaction in the context of cancer treatment. Also, an increasing number of trials have been conducted to evaluate the potential and feasibility of microbiome-targeting approaches to enhance efficacy of cancer treatment in patients. Here, the role of the gut microbiome and metabolites (e.g., short-chain fatty acids, tryptophan metabolites) in immunotherapy and the underlying mechanisms are explored. The application of microbiome-targeting approaches that aim to improve immunotherapy efficacy (e.g., fecal microbiota transplantation, probiotics, dietary intervention) is also elaborated, with further discussion on current challenges and suggestions for future research.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neoplasms , Humans , Immunotherapy , Treatment Outcome , Fecal Microbiota Transplantation
8.
Gut ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599786

ABSTRACT

OBJECTIVE: Probiotic Lactococcus lactis is known to confer health benefits to humans. Here, we aimed to investigate the role of L. lactis in colorectal cancer (CRC). DESIGN: L. lactis abundance was evaluated in patients with CRC (n=489) and healthy individuals (n=536). L. lactis was isolated from healthy human stools with verification by whole genome sequencing. The effect of L. lactis on CRC tumourigenesis was assessed in transgenic Apc Min/+ mice and carcinogen-induced CRC mice. Faecal microbiota was profiled by metagenomic sequencing. Candidate proteins were characterised by nano liquid chromatography-mass spectrometry. Biological function of L. lactis conditioned medium (HkyuLL 10-CM) and functional protein was studied in human CRC cells, patient-derived organoids and xenograft mice. RESULTS: Faecal L. lactis was depleted in patients with CRC. A new L. lactis strain was isolated from human stools and nomenclated as HkyuLL 10. HkyuLL 10 supplementation suppressed CRC tumourigenesis in Apc Min/+ mice, and this tumour-suppressing effect was confirmed in mice with carcinogen-induced CRC. Microbiota profiling revealed probiotic enrichment including Lactobacillus johnsonii in HkyuLL 10-treated mice. HkyuLL 10-CM significantly abrogated the growth of human CRC cells and patient-derived organoids. Such protective effect was attributed to HkyuLL 10-secreted proteins, and we identified that α-mannosidase was the functional protein. The antitumourigenic effect of α-mannosidase was demonstrated in human CRC cells and organoids, and its supplementation significantly reduced tumour growth in xenograft mice. CONCLUSION: HkyuLL 10 suppresses CRC tumourigenesis in mice through restoring gut microbiota and secreting functional protein α-mannosidase. HkyuLL 10 administration may serve as a prophylactic measure against CRC.

9.
J Am Chem Soc ; 146(12): 8407-8416, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38482804

ABSTRACT

Although a variety of chiral porous framework materials have been reported, there are few examples known to combine molecular chirality, helicity, and three-dimensional (3D) intrinsically chiral topology in one structure, which is beneficial for chirality transfer and amplification. Here, we report the synthesis of the first two 3D covalent organic frameworks (COFs) with an intrinsic chiral qzd topology, which exhibit unusual integration of various homochiral and homohelical features. By imine condensation of 4-connected porphyrin tetraamines and 2-connected enantiopure diene dialdehyde, we prepared two isostructural COFs with a noninterpenetrated qzd topology. The specific geometry and conformation flexibility of the V-shaped diene linker control the alignment of square-planar porphyrin units with rotational linkages and facilitate the creation of homochiral extended porous structures that feature a helical arrangement of porphyrins. Post-synthetic metalation of CCOF 23 with Rh(I) affords a heterogeneous catalyst for the asymmetric Michael addition reaction of aryl boronic acids to 2-cyclohexenone, which shows higher enantioselectivities compared to their homogeneous counterparts, presumably due to the confined effect of helical channels. This finding will provide an impetus to explore multichirality materials, offering new insights into the generation and control of helicity, homochirality, and enantioselectivity in the solid state.

10.
Hepatol Commun ; 8(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38466881

ABSTRACT

BACKGROUND: Autoimmune hepatitis (AIH) is an immune-mediated liver disease of unknown etiology accompanied by intestinal dysbiosis and a damaged intestinal barrier. Berberine (BBR) is a traditional antibacterial medicine that has a variety of pharmacological properties. It has been reported that BBR alleviates AIH, but relevant mechanisms remain to be fully explored. METHODS: BBR was orally administered at doses of 100 mg⋅kg-1⋅d-1 for 7 days to mice before concanavalin A-induced AIH model establishment. Histopathological, immunohistochemical, immunofluorescence, western blotting, ELISA, 16S rRNA analysis, flow cytometry, real-time quantitative PCR, and fecal microbiota transplantation studies were performed to ascertain BBR effects and mechanisms in AIH mice. RESULTS: We found that liver necrosis and apoptosis were decreased upon BBR administration; the levels of serum transaminase, serum lipopolysaccharide, liver proinflammatory factors TNF-α, interferon-γ, IL-1ß, and IL-17A, and the proportion of Th17 cells in spleen cells were all reduced, while the anti-inflammatory factor IL-10 and regulatory T cell proportions were increased. Moreover, BBR treatment increased beneficial and reduced harmful bacteria in the gut. BBR also strengthened ileal barrier function by increasing the expression of the tight junction proteins zonula occludens-1 and occludin, thereby blocking lipopolysaccharide translocation, preventing lipopolysaccharide/toll-like receptor 4 (TLR4)/ NF-κB pathway activation, and inhibiting inflammatory factor production in the liver. Fecal microbiota transplantation from BBR to model mice also showed that BBR potentially alleviated AIH by altering the gut microbiota. CONCLUSIONS: BBR alleviated concanavalin A-induced AIH by modulating the gut microbiota and related immune regulation. These results shed more light on potential BBR therapeutic strategies for AIH.


Subject(s)
Berberine , Gastrointestinal Microbiome , Hepatitis A , Hepatitis, Autoimmune , Mice , Animals , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/etiology , Berberine/pharmacology , Berberine/therapeutic use , Concanavalin A/pharmacology , Lipopolysaccharides/pharmacology , RNA, Ribosomal, 16S
11.
Sci Rep ; 14(1): 5069, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429334

ABSTRACT

The objective of this study was to evaluate and compare the effectiveness of three different types of bariatric surgeries, namely, sleeve gastrectomy (SG), one-anastomotic gastric bypass (OAGB), and single anastomosis sleeve ileal (SASI) bypass, in the treatment of metabolic syndrome (MS). The optimal approach for managing MS remains uncertain, and thus this study aimed to provide a recent analysis of the efficacy of these surgical procedures. This retrospective study evaluated data of individuals who underwent SG, OAGB, and SASI bypass. The primary outcome measures included weight, body mass index (BMI), glucolipid metabolic index, and the occurrence of treatment-related complications within 6 to 12 months post-surgery. A total of 324 patients were included in this study. Of these, 264 patients underwent SG, 30 underwent OAGB, and 30 underwent SASI bypass. A significant decrease in weight was observed at the 6-month and 12-month marks following all three surgical procedures. Of these, patients who underwent SASI bypass exhibited the greatest reduction in weight and BMI post-surgery. Furthermore, the SASI bypass was associated with a significantly higher percentage of total weight loss (%TWL) and excess body mass index loss (%EBMIL) compared to SG and OAGB. Patients who underwent OAGB and SASI bypass demonstrated notable improvements in type 2 diabetes mellitus (T2DM). Patients who underwent SASI bypass and OAGB experienced greater postoperative comfort and reported fewer complaints of discomfort compared to the other procedure. Based on the retrospective analysis of the data, SASI bypass was associated with greater reductions in weight and BMI, higher percentages of %TWL and %EBMIL, and better improvement in T2DM compared to SG and OAGB. Therefore, both SASI bypass and OAGB were found to be more effective than SG in the treatment of MS.


Subject(s)
Diabetes Mellitus, Type 2 , Gastric Bypass , Metabolic Syndrome , Obesity, Morbid , Humans , Gastric Bypass/adverse effects , Gastric Bypass/methods , Retrospective Studies , Obesity, Morbid/surgery , Diabetes Mellitus, Type 2/complications , Metabolic Syndrome/surgery , Metabolic Syndrome/complications , Gastrectomy/adverse effects , Gastrectomy/methods
12.
EBioMedicine ; 100: 104952, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176203

ABSTRACT

BACKGROUND: Gut probiotic depletion is associated with non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). Here, we investigated the prophylactic potential of Lactobacillus acidophilus against NAFLD-HCC. METHODS: NAFLD-HCC conventional and germ-free mice were established by diethylnitrosamine (DEN) injection with feeding of high-fat high-cholesterol (HFHC) or choline-deficient high-fat (CDHF) diet. Orthotopic NAFLD-HCC allografts were established by intrahepatic injection of murine HCC cells with HFHC feeding. Metabolomic profiling was performed using liquid chromatography-mass spectrometry. Biological functions of L. acidophilus conditional medium (L.a CM) and metabolites were determined in NAFLD-HCC human cells and mouse organoids. FINDINGS: L. acidophilus supplementation suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice. This was confirmed in orthotopic allografts and germ-free tumourigenesis mice. L.a CM inhibited the growth of NAFLD-HCC human cells and mouse organoids. The protective function of L. acidophilus was attributed to its non-protein small molecules. By metabolomic profiling, valeric acid was the top enriched metabolite in L.a CM and its upregulation was verified in liver and portal vein of L. acidophilus-treated mice. The protective function of valeric acid was demonstrated in NAFLD-HCC human cells and mouse organoids. Valeric acid significantly suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice, accompanied by improved intestinal barrier integrity. This was confirmed in another NAFLD-HCC mouse model induced by CDHF diet and DEN. Mechanistically, valeric acid bound to hepatocytic surface receptor GPR41/43 to inhibit Rho-GTPase pathway, thereby ablating NAFLD-HCC. INTERPRETATION: L. acidophilus exhibits anti-tumourigenic effect in mice by secreting valeric acid. Probiotic supplementation is a potential prophylactic of NAFLD-HCC. FUNDING: Shown in Acknowledgments.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Pentanoic Acids , Probiotics , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/etiology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/complications , Lactobacillus acidophilus , Liver Neoplasms/drug therapy , Liver Neoplasms/etiology , Liver/metabolism , Cell Transformation, Neoplastic/metabolism , Carcinogenesis/pathology , Diet, High-Fat , Choline/metabolism , Probiotics/pharmacology , Probiotics/therapeutic use , Mice, Inbred C57BL
13.
Cancer Sci ; 115(2): 369-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38050654

ABSTRACT

In gastric cancer (GC), the liver is a common organ for distant metastasis, and patients with gastric cancer with liver metastasis (GCLM) generally have poor prognosis. The mechanism of GCLM is unclear. Invadopodia are special membrane protrusions formed by tumor cells that can degrade the basement membrane and ECM. Herein, we investigated the role of invadopodia in GCLM. We found that the levels of invadopodia-associated proteins were significantly higher in liver metastasis than in the primary tumors of patients with GCLM. Furthermore, GC cells could activate hepatic stellate cells (HSCs) within the tumor microenvironment of liver metastases through the secretion of platelet-derived growth factor subunit B (PDGFB). Activated HSCs secreted hepatocyte growth factor (HGF), which activated the MET proto-oncogene, MET receptor of GC cells, thereby promoting invadopodia formation through the PI3K/AKT pathway and subsequently enhancing the invasion and metastasis of GC cells. Therefore, cross-talk between GC cells and HSCs by PDGFB/platelet derived growth factor receptor beta (PDGFRß) and the HGF/MET axis might represent potential therapeutic targets to treat GCLM.


Subject(s)
Liver Neoplasms , Podosomes , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Proto-Oncogene Proteins c-sis/metabolism , Hepatic Stellate Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Liver Neoplasms/pathology , Signal Transduction , Tumor Microenvironment
14.
J Am Chem Soc ; 146(1): 635-645, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38148276

ABSTRACT

Covalent organic frameworks (COFs) have undergone extensive research as heterogeneous catalysts for a wide range of significant reactions, but they have not yet been investigated in the realm of electrochemical asymmetric catalysis, despite their recognition as an economical and sustainable strategy for producing enantiopure compounds. Here, we report a mixed-linker strategy to design multicomponent two-dimensional (2D) chiral COFs with tunable layer stacking for highly enantioselective electrocatalysis. By crystallizing mixtures of triamines with and without the MacMillan imidazolidinone catalyst or aryl substituent (ethyl and isopropyl) and a dialdehyde derivative of thieno-[3,2-b]thiophene, we synthesized and structurally characterized a series of three-component homochiral 2D COFs featuring either AA or ABC stacking. The stacking modes that can be synthetically controlled through steric tuning using different aryl substituents affect their chemical stability and electrochemical performance. With the MacMillan catalyst periodically appended on their channels, all three COFs with conductive thiophene moieties can be highly enantioselective and recyclable electrocatalysts for the asymmetric α-arylation of aldehydes, affording alkylated anilines with up to 97% enantiomeric excess by an anodic oxidation/organocatalytic protocol. Presumably due to their higher charge transfer ability, the ABC stacking COFs exhibit improved reactivity compared to the AA stacking analogue. This work therefore advances COFs as electrocatalysts for asymmetric catalysis and may facilitate the design of more redox-active crystalline organic polymers for electrochemical enantioselective processes.

15.
Cancer Cell Int ; 23(1): 297, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012684

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a clonal malignant disorder which originates from a small number of leukemia-initiating cells or leukemic stem cells (LSCs)-the subpopulation that is also the root cause of relapsed/refractory AML. Chimeric antigen receptor (CAR)-T cell therapy has proved successful at combating certain hematologic malignancies, but has several hurdles that limit its widespread applications. CAR-natural killer (NK) cells do not carry the risk of inducing graft-versus-host disease (GvHD) frequently associated with allogeneic T cells, thereby overcoming time-consuming, autologous cell manufacturing, and have relatively safer clinical profiles than CAR-T cells. The present study aimed to generate anti-TIM3 CAR-NK cells targeting LSCs from a clonal master induced pluripotent stem cells engineered with the third-generation anti-TIM3 CAR. METHODS: A clonal master umbilical cord blood NK-derived induced pluripotent stem cell (iPSC) line, MUSIi013-A, was used as a starting cells for engineering of an anti-TIM3 CAR harboring TIM3 scFv fragment (clone TSR-022), CD28, 4-1BB, and CD3ζ signaling (CAR-TIM3). The established CAR-TIM3 iPSCs were further differentiated under serum- and feeder-free conditions into functional CAR-TIM3 NK cells and tested for its anti-tumor activity against various TIM3-positive AML cells. RESULTS: We successfully established a single-cell clone of CAR-TIM3 iPSCs, as validated by genomic DNA sequencing as well as antibody and antigen-specific detection. We performed thorough iPSC characterization to confirm its retained pluripotency and differentiation capacity. The established CAR-TIM3 iPSCs can be differentiated into CAR-TIM3 NK-like cells, which were further proven to have enhanced anti-tumor activity against TIM3-positive AML cells with minimal effect on TIM3-negative cells when compared with wild-type (WT) NK-like cells from parental iPSCs. CONCLUSIONS: iPSCs engineered with CARs, including the established single-cell clone CAR-TIM3 iPSCs herein, are potential alternative cell source for generating off-the-shelf CAR-NK cells as well as other CAR-immune cells. The feasibility of differentiation of functional CAR-TIM3 NK cells under serum- and feeder-free conditions support that Good Manufacturing Practice (GMP)-compliant protocols can be further established for future clinical applications.

16.
Medicine (Baltimore) ; 102(43): e35077, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37904354

ABSTRACT

RATIONALE: Laparoscopic Roux-en-Y gastric diversion is one of the most widely used surgical procedures for weight reduction and metabolic surgery, which is a hybrid approach to restrict intake and reduce absorption. Despite the successful completion of laparoscopic Roux-en-Y gastric diversion, 10% to 20% of patients still experience regained body mass or other complications. PATIENT CONCERNS: The patient had regained weight after all the RYGB surgeries, and after diet and exercise control, the results were not good, so she came to our department for treatment. DIAGNOSES: Dilatation of the gastric pouch was observed on iodinated water imaging of the upper gastrointestinal tract and on abdominal CT. INTERVENTIONS: We report 2 patients with dilated gastric bursa after RYGB, both female, who underwent gastric diversion revision. OUTCOMES: Both patients in this case underwent laparoscopic gastric diversion correction to improve weight rebound. Their quality of life improved significantly after treatment. There were no grade 3/4 treatment-related adverse events during the treatment period. LESSONS: The above cases suggest that patients who regain weight after RYGB should routinely undergo preoperative upper gastrointestinal endoscopy and upper gastrointestinal iodine hydrography in order to observe the muscle tone of the patient's gastric bursa and the degree of dilatation of the gastrointestinal anastomosis and consider whether to correct the dilated gastric bursa intraoperatively before converting to LSG.


Subject(s)
Dystocia , Gastric Bypass , Laparoscopy , Obesity, Morbid , Humans , Female , Obesity, Morbid/surgery , Gastric Bypass/methods , Gastrectomy/adverse effects , Gastrectomy/methods , Quality of Life , Reoperation/methods , Laparoscopy/methods , Dystocia/etiology , Retrospective Studies , Postoperative Complications/etiology , Treatment Outcome
17.
Gut ; 72(12): 2272-2285, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37770127

ABSTRACT

OBJECTIVE: Gut microbiota is a key player in dictating immunotherapy response. We aimed to explore the immunomodulatory effect of probiotic Lactobacillus gallinarum and its role in improving anti-programmed cell death protein 1 (PD1) efficacy against colorectal cancer (CRC). DESIGN: The effects of L. gallinarum in anti-PD1 response were assessed in syngeneic mouse models and azoxymethane/dextran sulfate sodium-induced CRC model. The change of immune landscape was identified by multicolour flow cytometry and validated by immunohistochemistry staining and in vitro functional assays. Liquid chromatography-mass spectrometry was performed to identify the functional metabolites. RESULTS: L. gallinarum significantly improved anti-PD1 efficacy in two syngeneic mouse models with different microsatellite instability (MSI) statuses (MSI-high for MC38, MSI-low for CT26). Such effect was confirmed in CRC tumourigenesis model. L. gallinarum synergised with anti-PD1 therapy by reducing Foxp3+ CD25+ regulatory T cell (Treg) intratumoural infiltration, and enhancing effector function of CD8+ T cells. L. gallinarum-derived indole-3-carboxylic acid (ICA) was identified as the functional metabolite. Mechanistically, ICA inhibited indoleamine 2,3-dioxygenase (IDO1) expression, therefore suppressing kynurenine (Kyn) production in tumours. ICA also competed with Kyn for binding site on aryl hydrocarbon receptor (AHR) and antagonised Kyn binding on CD4+ T cells, thereby inhibiting Treg differentiation in vitro. ICA phenocopied L. gallinarum effect and significantly improved anti-PD1 efficacy in vivo, which could be reversed by Kyn supplementation. CONCLUSION: L. gallinarum-derived ICA improved anti-PD1 efficacy in CRC through suppressing CD4+Treg differentiation and enhancing CD8+T cell function by modulating the IDO1/Kyn/AHR axis. L. gallinarum is a potential adjuvant to augment anti-PD1 efficacy against CRC.


Subject(s)
Colorectal Neoplasms , Immune Checkpoint Inhibitors , Kynurenine , Lactobacillus , Animals , Mice , CD8-Positive T-Lymphocytes , Colorectal Neoplasms/drug therapy , Kynurenine/metabolism , Receptors, Aryl Hydrocarbon/drug effects , Receptors, Aryl Hydrocarbon/metabolism , T-Lymphocytes, Regulatory , Lactobacillus/chemistry , Programmed Cell Death 1 Receptor/drug effects , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Bacterial Lysates/pharmacology , Bacterial Lysates/therapeutic use
18.
Nat Genet ; 55(9): 1555-1566, 2023 09.
Article in English | MEDLINE | ID: mdl-37666989

ABSTRACT

Parental histones, the carriers of posttranslational modifications, are deposited evenly onto the replicating DNA of sister chromatids in a process dependent on the Mcm2 subunit of DNA helicase and the Pole3 subunit of leading-strand DNA polymerase. The biological significance of parental histone propagation remains unclear. Here we show that Mcm2-mutated or Pole3-deleted mouse embryonic stem cells (ESCs) display aberrant histone landscapes and impaired neural differentiation. Mutation of the Mcm2 histone-binding domain causes defects in pre-implantation development and embryonic lethality. ESCs with biased parental histone transfer exhibit increased epigenetic heterogeneity, showing altered histone variant H3.3 and H3K27me3 patterning at genomic sites regulating differentiation genes. Our results indicate that the lagging strand pattern of H3.3 leads to the redistribution of H3K27me3 in Mcm2-2A ESCs. We demonstrate that symmetric parental histone deposition to sister chromatids contributes to cellular differentiation and development.


Subject(s)
Histones , Mouse Embryonic Stem Cells , Animals , Mice , Histones/genetics , Embryonic Stem Cells , Cell Differentiation/genetics , DNA Helicases
19.
Mol Nutr Food Res ; 67(24): e2300141, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37594720

ABSTRACT

SCOPE: Obesity has been recognized as a worldwide public health crisis, this is accompanied by dysregulation of the intestinal microbiota and upregulation of liver steatosis and adipose inflammation. Synbiotic as a novel alternative therapy for obesity have recently gained much attention. METHODS: This study innovatively research the anti-obesity properties of a newly synbiotic composed of Lactobacillus acidophilus, Bifidobacterium infantis and konjac glucomannan oligosaccharides. RESULTS: The synbiotic treatment can reduce body weight, fat mass, blood sugar, liver steatosis and adipose inflammation in obesity mice fed by high-fat diet (HFD). Meanwhile, synbiotic treatment activated brown adipose tissue and improve energy, glucose and lipid metabolism. In addition, synbiotic treatment not solely enhanced the protection of intestinal barrier, but also ameliorated gut microbiota dysbiosis directly by enhancing beneficial microbes and reducing potentially harmful bacteria. Furthermore, the microbiome phenotype and functional prediction showed that synbiotic treatment can improve the gut microbiota functions involving inflammatory state, immune response, metabolism and pathopoiesia. CONCLUSION: The synbiotic may be an effective candidate treatment strategy for the clinical prevention and treatment of obesity and other associated metabolic diseases such as hyperlipidemia, nonalcoholic fatty liver diseases by alleviating inflammatory response, regulating energy metabolism and maintaining the balance of intestinal microecology.


Subject(s)
Gastrointestinal Microbiome , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Synbiotics , Mice , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Obesity/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Signal Transduction , Inflammation , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
20.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445684

ABSTRACT

Natural killer (NK) cells are a part of innate immunity that can be activated rapidly in response to malignant transformed cells without prior sensitization. Engineering NK cells to express chimeric antigen receptors (CARs) allows them to be directed against corresponding target tumor antigens. CAR-NK cells are regarded as a promising candidate for cellular immunotherapy alternatives to conventional CAR-T cells, due to the relatively low risk of graft-versus-host disease and safer clinical profile. Human induced pluripotent stem cells (iPSCs) are a promising renewable cell source of clinical NK cells. In the present study, we successfully introduced a third-generation CAR targeting CD19, which was validated to have effective signaling domains suitable for NK cells, into umbilical cord blood NK-derived iPSCs, followed by a single-cell clone selection and thorough iPSC characterization. The established single-cell clone of CAR19-NK/iPSCs, which is highly desirable for clinical application, can be differentiated using serum- and feeder-free protocols into functional CAR19-iNK-like cells with improved anti-tumor activity against CD19-positive hematologic cancer cells when compared with wild-type (WT)-iNK-like cells. With the feasibility of being an alternative source for off-the-shelf CAR-NK cells, a library of single-cell clones of CAR-engineered NK/iPSCs targeting different tumor antigens may be created for future clinical application.


Subject(s)
Induced Pluripotent Stem Cells , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive , Killer Cells, Natural , Antigens, Neoplasm
SELECTION OF CITATIONS
SEARCH DETAIL
...