Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Bone Joint Res ; 12(9): 522-535, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37661086

ABSTRACT

Aims: This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). Methods: The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions. Results: A total of 56 EP-DEGs were identified in the differential expression analysis. EP-DEGs were enriched in the extracellular structure organization, ageing, collagen-activated signalling pathway, PI3K-Akt signalling pathway, and AGE-RAGE signalling pathway. PPI network analysis showed that the top ten hub EP-DEGs are closely related to IDD. Correlation analysis also demonstrated a significant correlation between the ten hub EP-DEGs (p<0.05), which were selected to construct TF-gene interaction and TF-miRNA coregulatory networks. In addition, ten candidate drugs were screened for the treatment of IDD. Conclusion: The findings clarify the roles of extracellular proteins in IDD and highlight their potential as promising novel therapeutic targets.

2.
Neuroscience ; 517: 18-25, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36893983

ABSTRACT

N-acetylserotonin (NAS) is a chemical intermediate in melatonin biosynthesis. NAS and its derivative N-(2-(5-hydroxy-1H-indol-3-yl) ethyl)-2-oxopiperidine-3-carboxamide (HIOC) are potential therapeutic agents for traumatic brain injury, autoimmune encephalomyelitis, hypoxic-ischemic encephalopathy, and other diseases. Evidence shows that NAS and its derivative HIOC have neuroprotective properties, and can exert neuroprotective effects by inhibiting oxidative stress, anti-apoptosis, regulating autophagy dysfunction, and anti-inflammatory. In this review, we discussed the neuroprotective effects and related mechanisms of NAS and its derivative HIOC to provide a reference for follow-up research and applications.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Melatonin , Neuroprotective Agents , Animals , Humans , Neuroprotective Agents/pharmacology , Serotonin/pharmacology , Neuroprotection , Melatonin/pharmacology
3.
Cell Prolif ; 56(1): e13338, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36193577

ABSTRACT

Intervertebral disc degeneration (IDD), an important cause of chronic low back pain (LBP), is considered the pathological basis for various spinal degenerative diseases. A series of factors, including inflammatory response, oxidative stress, autophagy, abnormal mechanical stress, nutritional deficiency, and genetics, lead to reduced extracellular matrix (ECM) synthesis by intervertebral disc (IVD) cells and accelerate IDD progression. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a vital role in diverse degenerative diseases. Recent studies have shown that mTOR signalling is involved in the regulation of autophagy, oxidative stress, inflammatory responses, ECM homeostasis, cellular senescence, and apoptosis in IVD cells. Accordingly, we reviewed the mechanism of mTOR signalling in the pathogenesis of IDD to provide innovative ideas for future research and IDD treatment.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Animals , Humans , Intervertebral Disc Degeneration/pathology , Sirolimus , Intervertebral Disc/pathology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Mammals/metabolism , Nucleus Pulposus/metabolism
4.
Mediators Inflamm ; 2022: 2579003, 2022.
Article in English | MEDLINE | ID: mdl-35966334

ABSTRACT

Spinal cord injury (SCI) is a highly disabling disorder for which few effective treatments are available. Grape seed proanthocyanidins (GSPs) are polyphenolic compounds with various biological activities. In our preliminary experiment, GSP promoted functional recovery in rats with SCI, but the mechanism remains unclear. Therefore, we explored the protective effects of GSP on SCI and its possible underlying mechanisms. We found that GSP promoted locomotor recovery, reduced neuronal apoptosis, increased neuronal preservation, and regulated microglial polarisation in vivo. We also performed in vitro studies to verify the effects of GSP on neuronal protection and microglial polarisation and their potential mechanisms. We found that GSP regulated microglial polarisation and inhibited apoptosis in PC12 cells induced by M1-BV2 cells through the Toll-like receptor 4- (TLR4-) mediated nuclear factor kappa B (NF-κB) and phosphatidylinositol 3-kinase/serine threonine kinase (PI3K/AKT) signaling pathways. This suggests that GSP regulates microglial polarisation and prevents neuronal apoptosis, possibly by the TLR4-mediated NF-κB and PI3K/AKT signaling pathways.


Subject(s)
Neuroprotective Agents , Spinal Cord Injuries , Animals , Grape Seed Extract , Microglia/metabolism , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proanthocyanidins , Proto-Oncogene Proteins c-akt/metabolism , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Toll-Like Receptor 4/metabolism
5.
Anal Bioanal Chem ; 414(24): 7123-7141, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35962791

ABSTRACT

Exosomes are extracellular vesicles with a diameter ranging from 30 to 150 nm, which are an important medium for intercellular communication and are closely related to the progression of certain diseases. Therefore, exosomes are considered promising biomarkers for the diagnosis of specific diseases, and thereby, treatments based on exosomes are being widely examined. For exosome-related research, a rapid, simple, high-purity, and recovery isolation method is the primary prerequisite for exosomal large-scale application in medical practice. Although there are no standardized methods for exosome separation and analysis, various techniques have been established to explore their biochemical and physicochemical properties. In this review, we analyzed the progress in exosomal isolation strategies and proposed our views on the development prospects of various exosomal isolation techniques.


Subject(s)
Exosomes , Biomarkers/analysis , Exosomes/chemistry
6.
Connect Tissue Res ; 63(6): 559-576, 2022 11.
Article in English | MEDLINE | ID: mdl-35736364

ABSTRACT

Intervertebral disc degeneration (IDD) is a common age-related disease with clinical manifestations of lumbar and leg pain and limited mobility. The pathogenesis of IDD is mainly mediated by the death of intervertebral disc (IVD) cells and the imbalance of extracellular matrix (ECM) synthesis and degradation. Oxidative stress and inflammatory reactions are the important factors causing this pathological change. Therefore, the regulation of reactive oxygen species and production of inflammatory factors may be an effective strategy to delay the progression of IDD. In recent years, nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream regulated protein heme oxygenase-1 (HO-1) have received special attention due to their antioxidant, anti-inflammatory and anti-apoptotic protective effects. Recent studies have elucidated the important role of these two proteins in the treatment of IDD disease. However, Nrf2 and HO-1 have not been systematically reported in IDD-related diseases. Therefore, this review describes the biological characteristics of Nrf2 and HO-1, the relationship between Nrf2- and HO-1-regulated oxidative stress and the inflammatory response and IDD, and the progress in research on some extracts targeting Nrf2 and HO-1 to improve IDD. Understanding the role and mechanism of Nrf2 and HO-1 in IDD may provide novel ideas for the clinical treatment and development of Nrf2- and HO-1-targeted drugs.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/therapeutic use , Antioxidants/metabolism , Antioxidants/therapeutic use , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/therapeutic use , Humans , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/therapeutic use , Nucleus Pulposus/pathology , Reactive Oxygen Species/metabolism
7.
Connect Tissue Res ; 63(6): 650-662, 2022 11.
Article in English | MEDLINE | ID: mdl-35491814

ABSTRACT

BACKGROUND: Low back pain is a common symptom of intervertebral disc degeneration (IDD), which seriously affects the quality of life of patients. The abnormal apoptosis and senescence of nucleus pulposus (NP) cells play important roles in the pathogenesis of IDD. Proanthocyanidins (PACs) are polyphenolic compounds with anti-apoptosis and anti-aging effects. However, their functions in NP cells are not yet clear. Therefore, this study was performed to explore the effects of PACs on NP cell apoptosis and aging and the underlying mechanisms of action. METHODS: Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined TUNEL assays. Levels of apoptosis-associated molecules (Bcl-2, Bax, C-caspase-3 and Caspase-9) were evaluated via western blot. The senescence was observed through SA-ß-gal staining and western blotting analysis was performed to observe the expression of senescence-related molecules (p-P53, P53, P21 and P16). RESULTS: Pretreatment with PACs exhibited protective effects against IL-1ß-induced NP cell apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. PACs could also alleviate the increase of p-p53, P21, and P16 in IL-1ß-treated NP cells. SA-ß-gal staining showed that IL-1ß-induced senescence of NP cells was prevented by PACs pertreatment. In addition, PACs activated PI3K/Akt pathway in IL-1ß-stimulated NP cells. However, these protected effects were inhibited after LY294002 treatment. CONCLUSION: The results of the present study showed that PACs inhibit IL-1ß-induced apoptosis and aging of NP cells by activating the PI3K/Akt pathway, and suggested that PACs have therapeutic potential for IDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Proanthocyanidins , Aging , Caspase 3/metabolism , Caspase 9/metabolism , Caspase 9/pharmacology , Cells, Cultured , Humans , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proanthocyanidins/metabolism , Proanthocyanidins/pharmacology , Proanthocyanidins/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Quality of Life , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology , Tumor Suppressor Protein p53/therapeutic use , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology
8.
Oxid Med Cell Longev ; 2022: 9181412, 2022.
Article in English | MEDLINE | ID: mdl-35308165

ABSTRACT

Intervertebral disc degeneration (IDD) is the most common chronic skeletal muscle degeneration disease. Although the underlying mechanisms remain unclear, nucleus pulposus (NP) autophagy, senescence, and apoptosis are known to play a critical role in this process. Previous studies suggest that bromodomain-containing protein 4 (BRD4) promotes senescent and apoptotic effects in several age-related degenerative diseases. It is not known, however, if BRD4 inhibition is protective in IDD. In this study, we explored whether BRD4 influenced IDD. In human clinical specimens, the BRD4 level was markedly increased with the increasing Pfirrmann grade. At the cellular level, BRD4 inhibition prevented IL-1ß-induced senescence and apoptosis of NP cells and activated autophagy via the AMPK/mTOR/ULK1 signaling pathway. Inhibition of autophagy by 3-methyladenine (3-MA) partially reversed the antisenescence and antiapoptotic effects of BRD4. In vivo, BRD4 inhibition attenuated IDD. Taken together, the results of this study showed that BRD4 inhibition reduced NP cell senescence and apoptosis by induced autophagy, which ultimately alleviated IDD. Therefore, BRD4 may serve as a novel potential therapeutic target for the treatment of IDD.


Subject(s)
Cell Cycle Proteins , Intervertebral Disc Degeneration , Nucleus Pulposus , Transcription Factors , Apoptosis , Autophagy , Cell Cycle Proteins/metabolism , Cellular Senescence , Humans , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Nuclear Proteins/metabolism , Nucleus Pulposus/metabolism , Transcription Factors/metabolism
9.
Article in English | MEDLINE | ID: mdl-34394398

ABSTRACT

Intervertebral disc degeneration (IDD) is one of the main causes of low back pain (LBP), which severely reduces the quality of life and imposes a heavy financial burden on the families of affected individuals. Current research suggests that IDD is a complex cell-mediated process. Inflammation, oxidative stress, mitochondrial dysfunction, abnormal mechanical load, telomere shortening, DNA damage, and nutrient deprivation contribute to intervertebral disc cell senescence and changes in matrix metabolism, ultimately causing IDD. Natural products are widespread, structurally diverse, afford unique advantages, and exhibit great potential in terms of IDD treatment. In recent years, increasing numbers of natural ingredients have been shown to inhibit the degeneration of nucleus pulposus cells through various modes of action. Here, we review the pharmacological effects of natural products on nucleus pulposus cells and the mechanisms involved. An improved understanding of how natural products target signalling pathways will aid the development of anti-IDD drugs. This review focuses on potential IDD drugs.

10.
Regen Med ; 16(5): 465-476, 2021 05.
Article in English | MEDLINE | ID: mdl-33955796

ABSTRACT

Spinal cord injury (SCI) is a severe CNS injury that results in abnormalities in, or loss of, motor, sensory and autonomic nervous function. miRNAs belong to a new class of noncoding RNA that regulates the production of proteins and biological function of cells by silencing translation or interfering with the expression of target mRNAs. Following SCI, miRNAs related to oxidative stress, inflammation, autophagy, apoptosis and many other secondary injuries are differentially expressed, and these miRNAs play an important role in the progression of secondary injuries after SCI. The purpose of this review is to elucidate the differential expression and functional roles of miRNAs after SCI, thus providing references for further research on miRNAs in SCI.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Apoptosis , Humans , MicroRNAs/genetics , RNA, Messenger , Spinal Cord , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy
11.
Cell Prolif ; 54(7): e13057, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34028920

ABSTRACT

Intervertebral disc degeneration (IDD) is a common clinical degenerative disease of the spine. A series of factors, such as inflammation, oxidative stress and mechanical stress, promote degradation of the extracellular matrix (ECM) of the intervertebral discs (IVD), leading to dysfunction and structural destruction of the IVD. Nuclear factor-κB (NF-κB) transcription factor has long been regarded as a pathogenic factor of IDD. Therefore, NF-κB may be an ideal therapeutic target for IDD. As NF-κB is a multifunctional functional transcription factor with roles in a variety of biological processes, a comprehensive understanding of the function and regulatory mechanism of NF-κB in IDD pathology will be useful for the development of targeted therapeutic strategies for IDD, which can prevent the progression of IDD and reduce potential risks. This review discusses the role of the NF-κB signalling pathway in the nucleus pulposus (NP) in the process of IDD to understand pathological NP degeneration further and provide potential therapeutic targets that may interfere with NF-κB signalling for IDD therapy.


Subject(s)
Intervertebral Disc Degeneration/pathology , NF-kappa B/metabolism , Nucleus Pulposus/metabolism , Epigenomics , Extracellular Matrix/metabolism , Histone Deacetylases/metabolism , Humans , Oxidative Stress , RNA, Untranslated/metabolism , Signal Transduction
12.
World Neurosurg ; 150: e127-e134, 2021 06.
Article in English | MEDLINE | ID: mdl-33684582

ABSTRACT

BACKGROUND: Degenerative lumber spondylolisthesis (DLS) is a common orthopedic condition, described as a condition that compared with the lower vertebra, the superior vertebra slides forward or backward in the sagittal plane without accompanying isthmic spondylolisthesis. Information pertaining to different types of double-level DLS is scarce. This study aims to analyze parameters of patients with different types of double-level DLS to provide a reference for guiding surgical treatment and restoring sagittal balance of patients with DLS. METHODS: From January 2014 to January 2020, records of patients with double-level DLS were retrospectively reviewed. Patients with double-level DLS were divided into 3 types: anterior, posterior, and combined; the anterior and combined types were studied. The sagittal spinopelvic parameters included C7 tilt, maximal thoracic kyphosis, maximal lumbar lordosis (LLmax), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). After descriptive analysis, demographic and radiographic data were compared. RESULTS: Forty and 18 patients were included in the anterior and combined type groups, respectively. Both groups had different levels of chronic low back pain, but the incidence of radiating leg pain and neurogenic claudication was significantly higher in the anterior type. Oswestry Disability Index and visual analog scale low back scores were also higher in the anterior type. In the anterior type, C7 tilt (7.14 ± 2.15 vs. 5.41 ± 2.28, P = 0.007), LLmax (50.02 ± 14.76 vs. 36.96 ± 14.56, P = 0.003), PI (68.28 ± 9.16 vs. 55.53 ± 14.19, P < 0.001), PT (28.68 ± 7.31 vs. 19.38 ± 4.70, P < 0.001), and PT/PI (42.45 ± 11.22 vs. 36.04 ± 9.87, P = 0.041) were significantly higher. In the anterior type, PI correlated positively with LLmax (r = 0.59) and SS (r = 0.71). LLmax and SS (r = 0.65) had a positive correlation. PT/PI and SS (r = -0.77) had a negative correlation. In the combined type, PI correlated positively with LLmax (r = 0.61) and SS (r = 0.88), and PT/PI correlated negatively with SS (r = -0.81). CONCLUSIONS: In patients with double-level DLS, the sagittal spinopelvic parameters differed between the anterior and combined types. Overall, spinal surgeons should focus on correcting sagittal deformities, relieving postoperative clinical symptoms, and improving quality of life during fusion surgery.


Subject(s)
Intervertebral Disc Degeneration/pathology , Lumbar Vertebrae/pathology , Spondylolisthesis/pathology , Aged , Disability Evaluation , Female , Humans , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/surgery , Kyphosis/pathology , Lordosis/pathology , Low Back Pain/etiology , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Male , Middle Aged , Neurosurgical Procedures , Pelvis/pathology , Retrospective Studies , Spinal Fusion , Spondylolisthesis/diagnostic imaging , Spondylolisthesis/surgery
13.
Stem Cell Res Ther ; 12(1): 102, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536064

ABSTRACT

Spinal cord injury (SCI) often leads to serious motor and sensory dysfunction of the limbs below the injured segment. SCI not only results in physical and psychological harm to patients but can also cause a huge economic burden on their families and society. As there is no effective treatment method, the prevention, treatment, and rehabilitation of patients with SCI have become urgent problems to be solved. In recent years, mesenchymal stem cells (MSCs) have attracted more attention in the treatment of SCI. Although MSC therapy can reduce injured volume and promote axonal regeneration, its application is limited by tumorigenicity, a low survival rate, and immune rejection. Accumulating literature shows that exosomes have great potential in the treatment of SCI. In this review, we summarize the existing MSC-derived exosome studies on SCI and discuss the advantages and challenges of treating SCI based on exosomes derived from MSCs.


Subject(s)
Exosomes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Cord Injuries , Humans , Spinal Cord , Spinal Cord Injuries/therapy
14.
Neural Regen Res ; 16(3): 405-413, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32985458

ABSTRACT

Spinal cord injury can lead to severe motor, sensory and autonomic nervous dysfunctions. However, there is currently no effective treatment for spinal cord injury. Neural stem cells and progenitor cells, bone marrow mesenchymal stem cells, olfactory ensheathing cells, umbilical cord blood stem cells, adipose stem cells, hematopoietic stem cells, oligodendrocyte precursor cells, macrophages and Schwann cells have been studied as potential treatments for spinal cord injury. These treatments were mainly performed in animals. However, subtle changes in sensory function, nerve root movement and pain cannot be fully investigated with animal studies. Although these cell types have shown excellent safety and effectiveness in various animal models, sufficient evidence of efficacy for clinical translation is still lacking. Cell transplantation should be combined with tissue engineering scaffolds, local drug delivery systems, postoperative adjuvant therapy and physical rehabilitation training as part of a comprehensive treatment plan to provide the possibility for patients with SCI to return to normal life. This review summarizes and analyzes the clinical trials of cell transplantation therapy in spinal cord injury, with the aim of providing a rational foundation for the development of clinical treatments for spinal cord injury.

15.
Bone Joint Res ; 9(6): 322-332, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32670565

ABSTRACT

AIMS: The aim of this study was to examine whether tourniquet use can improve perioperative blood loss, early function recovery, and pain after primary total knee arthroplasty (TKA) in the setting of multiple-dose intravenous tranexamic acid. METHODS: This was a prospective, randomized clinical trial including 180 patients undergoing TKA with multiple doses of intravenous tranexamic acid. One group was treated with a tourniquet during the entire procedure, the second group received a tourniquet during cementing, and the third group did not receive a tourniquet. All patients received the same protocol of intravenous tranexamic acid (20 mg/kg) before skin incision, and three and six hours later (10 mg/kg). The primary outcome measure was perioperative blood loss. Secondary outcome measures were creatine kinase (CK), CRP, interleukin-6 (IL-6), visual analogue scale (VAS) pain score, limb swelling ratio, quadriceps strength, straight leg raising, range of motion (ROM), American Knee Society Score (KSS), and adverse events. RESULTS: The mean total blood loss was lowest in the no-tourniquet group at 867.32 ml (SD 201.11), increased in the limited-tourniquet group at 1024.35 ml (SD 176.35), and was highest in the tourniquet group at 1,213.00 ml (SD 211.48). The hidden blood loss was lowest in the no-tourniquet group (both p < 0.001). There was less mean intraoperative blood loss in the tourniquet group (77.48 ml (SD 24.82)) than in the limited-tourniquet group (137.04 ml (SD 26.96)) and the no-tourniquet group (212.99 ml (SD 56.35); both p < 0.001). Patients in the tourniquet group showed significantly higher levels of muscle damage and inflammation biomarkers such as CK, CRP, and IL-6 than the other two groups (p < 0.05). Outcomes for VAS pain scores, limb swelling ratio, quadriceps strength, straight leg raising, ROM, and KSS were significantly better in the no-tourniquet group at three weeks postoperatively (p < 0.05), but there were no significant differences at three months. No significant differences were observed among the three groups with respect to transfusion rate, thrombotic events, or the length of hospital stay. CONCLUSION: Patients who underwent TKA with multiple doses of intravenous tranexamic acid but without a tourniquet presented lower total blood loss and hidden blood loss, and they showed less postoperative inflammation reaction, less muscle damage, lower VAS pain score, and better early knee function. Our results argue for not using a tourniquet during TKA.Cite this article: Bone Joint Res 2020;9(6):322-332.

16.
Clin Chim Acta ; 508: 33-42, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32348785

ABSTRACT

Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which seriously reduces the quality of life of patients and places a heavy economic burden on their families. Cellular senescence is considered to be an important factor leading to IDD, and inflammatory response, oxidative stress, and mitochondrial dysfunction are closely related to intervertebral disc (IVD) senescence. Therefore, inhibition of the inflammatory response and oxidative stress, along with maintaining mitochondrial function, may be useful in treating IDD. The sirtuins are a family of evolutionarily conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, which are the major molecules mediating life extension or delay of aging-related diseases. The sirtuin protein family consist of seven members (SIRT1 - 7), which are mainly involved in various aging-related diseases by regulating inflammation, oxidative stress, and mitochondrial function. Among them, SIRT1, SIRT2, SIRT3, and SIRT6 are closely related to IDD. In addition, some activators of sirtuin proteins, such as resveratrol, melatonin, magnolol, 1,4-dihydropyridine (DHP), SRT1720, and nicotinamide mononucleotide (NMN), have been evaluated in preclinical studies for their effects in preventing IDD. This review described the biological functions of sirtuins and the important roles of SIRT1, SIRT2, SIRT3, and SIRT6 in IDD by regulating oxidative stress, inflammatory response, and mitochondrial function. In addition, we introduce the status of some sirtuin activators in IDD preclinical studies. This review will provide a background for further clarification of the molecular mechanism underlying IDD and the development of potential therapeutic drugs.


Subject(s)
Intervertebral Disc Degeneration , Sirtuins , Humans , Inflammation , Intervertebral Disc Degeneration/drug therapy , Mitochondria/metabolism , Oxidative Stress , Quality of Life , Sirtuins/metabolism
17.
Zhongguo Gu Shang ; 32(3): 269-277, 2019 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-30922012

ABSTRACT

OBJECTIVE: To systematically evaluate the efficacy and safety of anterior decompression and posterior decompression in the treatment of thoracolumbar fractures with spinal cord injury, so as to provide a good scientific basis for more effective treatment of thoracolumbar fractures with spinal cord injury. METHODS: A clinical data about comparative study of anterior decompression and posterior decompression in the treatment of thoracolumbar fractures with spinal cord injury was searched and collected. The databases of Pubmed, Embase, Cochrane Library, CNKI, CBM, Wanfang Medical Network were searched by computer. Artificially collected journals included Spine, European Spine Journal, The Journal of Bone and Joint Surgery. Two spine surgeons independently screened the literature according to established inclusion and exclusion criteria and assessed the quality of the included studies. Meta-analysis was performed on the data using Review Manager 5.3 software, the indicators included operative time, intraoperative blood loss, postoperative tactile score, postoperative motor score, postoperative vertebral height, hospitalization time, neurological function recovery, efficiency of treatment, postoperative complications. RESULTS: Fifteen randomized controlled trials (RCTs) were enrolled in a total of 1 360 patients, including 680 anterior decompression and 680 posterior decompression. The results of Meta-analysis showed that the anterior decompression group had longer operation time [MD=80.09, 95% CI(36.83, 123.34), P=0.000 3], more intraoperative blood loss [MD=225.21, 95%CI(171.07, 279.35), P<0.000 01], longer hospitalization time [MD=2.31, 95% CI(0.32, 4.31), P=0.02]. And the postoperative tactile score [MD=13.39, 95% CI(9.86, 16.92), P<0.000 01], postoperative motor score [MD=13.15, 95% CI(7.02, 19.29), P<0.000 1], vertebral height [MD=1.36, 95% CI(0.79, 1.92), P<0.000 01] in anterior decompression were higher than that in posterior decompression. There was no statistically significant differences in the efficacy of treatment [OR=1.14, 95% CI(0.56, 2.31), P=0.72], neurological recovery [OR=0.87, 95% CI(0.57, 1.33), P=0.52] between two groups. CONCLUSIONS: Compared with posterior decompression, the anterior decompression has the advantages of longer operating time, more intraoperative blood loss, longer hospitalization time, higher postoperative tactile score, higher postoperative motor score, and higher injury vertebral height, But there was no significant difference in the treatment efficiency and nerve function recovery between two groups.


Subject(s)
Spinal Cord Injuries , Spinal Fractures , Decompression, Surgical , Humans , Lumbar Vertebrae , Thoracic Vertebrae , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...