Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
World Neurosurg ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782255

ABSTRACT

BACKGROUND: Nucleus pulposus cells (NPCs) survive in a hypoxic, acidic, nutrient-poor, and hypotonic microenvironment. Consequently, they maintain low proliferation and undergo autophagy to protect themselves from cellular stress. Therefore, we aimed to identify autophagy-related biomarkers involved in intervertebral disc degeneration (IDD) pathogenesis. METHODS: Autophagy-related differentially expressed genes (ARDEGs) were derived from the intersection between the public GSE147383 microarray dataset to identify differentially expressed genes and online databases to identify autophagy-related genes. Furthermore, we assessed their biological functions with gene annotation and enrichment analysis in the Metscape portal. Then, the STRING database and Cytoscape software allowed inferring a protein-protein interaction (PPI) network and identifying hub genes. In addition, to predict transcription factors that may regulate the hub genes, we used the GeneMANIA website. Finally, the competing endogenous RNA (ceRNA) prediction tools and Cytoscape were also used to construct an mRNA-miRNA-lncRNA network. RESULTS: 123 ARDEGs were identified, they were mainly involved in PI3K-Akt signaling, autophagy-animal, and apoptosis pathways. 9 were identified as hub genes (PTEN, MYC, CTNNB1, JUN, BECN1, ERBB2, FOXO3, ATM, and FN1) and 36 transcription factors were associated with them. Finally, an autophagy-associated ceRNA network was constructed based on the 9 hub genes. CONCLUSIONS: Nine hub genes were identified and a network of ceRNA associated with autophagy was established. They can be used as autophagy-related biomarkers of IDD and for further exploration.

2.
Bone Joint Res ; 13(5): 247-260, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771134

ABSTRACT

Aims: In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. Methods: An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel's mechanism in IVDD. Results: A correlation between DDIT4 expression levels and disc degeneration was shown with human nucleus pulposus and needle-punctured rat disc specimens. We confirmed that DDIT4 was responsible for activating the ROS-TXNIP-NLRP3 axis during oxidative stress-induced pyroptosis in rat nucleus pulposus in vitro. Mitochondria were damaged during oxidative stress, and DDIT4 contributed to mitochondrial damage and ROS production. In addition, siDDIT4@G5-P-HA hydrogels showed good delivery activity of siDDIT4 to NPCs. In vitro studies illustrated the potential of the siDDIT4@G5-P-HA hydrogel for alleviating IVDD in rats. Conclusion: DDIT4 is a key player in mediating pyroptosis and IVDD in NPCs through the ROS-TXNIP-NLRP3 axis. Additionally, siDDIT4@G5-P-HA hydrogel has been found to relieve IVDD in rats. Our research offers an innovative treatment option for IVDD.

3.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728878

ABSTRACT

Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.


Subject(s)
Apoptosis , Bradykinin , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Rats, Sprague-Dawley , tert-Butylhydroperoxide , Animals , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , tert-Butylhydroperoxide/toxicity , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Humans , Male , Bradykinin/pharmacology , Apoptosis/drug effects , Oxidative Stress/drug effects , Rats , Cells, Cultured , Receptor, Bradykinin B2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Female , Microspheres , Signal Transduction/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal
4.
Article in English | MEDLINE | ID: mdl-38807023

ABSTRACT

HSP70 exhibits neuroprotective, antioxidant, and anti-apoptotic properties, which are crucial in preventing spinal cord injury (SCI) induced by oxidative stress and apoptosis. In this study, we assessed the potential protective effects and underlying mechanisms of HSP70 on tert-butyl hydroperoxide (TBHP)-damaged PC12 cells in an in vitro model of SCI. To establish the model, PC12 cells were subjected to oxidative damage induced by TBHP, followed by overexpression of HSP70. Cell viability was assessed using the CCK8 kit, intracellular reactive oxygen species level was evaluated using a commercial kit, cell apoptosis was detected using the Annexin V-APC/7-ADD Apoptosis Detection Kit, and the oxidative stress level was determined using SOD and MDA assay kits. Western blot analysis was used to detect the expression levels of Bax, cleaved caspase-3, and Bcl-2 proteins. Furthermore, immunofluorescence staining and Western bolt were used to detect the expression levels of proteins associated with the Nrf2/HO-1 signaling pathway. We found that HSP70 overexpression reduced apoptosis and oxidative stress in TBHP-induced PC12 cells. Furthermore, it activated the Nrf2/HO-1 signaling pathway. In addition, the Nrf2 inhibitor ML385 attenuated the protective effects of HSP70 on TBHP-induced PC12 cells. In conclusion, HSP70 can partially alleviate TBHP-induced apoptosis and oxidative stress in PC12 cells by promoting the Nrf2/HO-1 signaling pathway.

5.
Biomolecules ; 14(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38672411

ABSTRACT

Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.


Subject(s)
Intervertebral Disc Degeneration , JNK Mitogen-Activated Protein Kinases , p38 Mitogen-Activated Protein Kinases , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Animals , MAP Kinase Signaling System , Signal Transduction , Oxidative Stress , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc/enzymology
6.
Spine J ; 24(6): 1034-1045, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38365007

ABSTRACT

BACKGROUND: An increasing number of research indicates an association between low-grade bacterial infections, particularly those caused by Propionibacterium acnes (P. acnes), and the development of intervertebral disc degeneration (IDD). However, no previous meta-analysis has systematically assessed the risk factors for low-grade bacterial infections that cause IDD. PURPOSE: This study reviewed the literature to evaluate the risk factors associated with low-grade bacterial infection in patients with IDD. STUDY DESIGN: Systematic review and meta-analysis. METHODS: The systematic literature review was conducted using the PubMed, Web of Science, Embase, and Cochrane Library databases. Eligible articles explicitly identified the risk factors for low-grade bacterial infections in IDD patients. Patient demographics and total bacterial infection rates were extracted from each study. Meta-analysis was performed using random- or fixed-effects models, with statistical analyses conducted using Review Manager (RevMan) 5.4 software.aut. RESULTS: Thirty-three studies involving 4,109 patients were included in the meta-analysis. The overall pooled low-grade bacterial infection rate was 30% (range, 24%-37%), with P. acnes accounting for 25% (range, 19%-31%). P. acnes constituted 66.7% of bacteria-positive discs. Fourteen risk factors were identified, of which 8 were quantitatively explored. Strong evidence supported male sex (odds ratio [OR] = 2.15; 95% confidence interval [CI]=1.65-2.79; p<.00001) and Modic changes (MCs) (OR=3.59; 95% CI=1.68-7.76; p=.0009); moderate evidence of sciatica (OR=2.31; 95% CI=1.33-4.00; p=.003) and younger age (OR=-3.47; 95% CI=-6.42 to -0.53; p=.02). No evidence supported previous disc surgery, MC type, Pfirrmann grade, smoking, or diabetes being risk factors for low-grade bacterial infections in patients with IDD. CONCLUSIONS: Current evidence highlights a significant association between IDD and low-grade bacterial infections, predominantly P. acnes being the most common causative agent. Risk factors associated with low-grade bacterial infections in IDD include male sex, MCs, sciatica, and younger age.


Subject(s)
Intervertebral Disc Degeneration , Propionibacterium acnes , Humans , Intervertebral Disc Degeneration/epidemiology , Intervertebral Disc Degeneration/microbiology , Risk Factors , Propionibacterium acnes/isolation & purification , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/complications , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/complications
7.
Cell Prolif ; 57(2): e13541, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37697480

ABSTRACT

Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Intervertebral Disc Degeneration/metabolism , Notochord/metabolism , Notochord/pathology , Nucleus Pulposus/metabolism , Cell Proliferation , Apoptosis , Intervertebral Disc/pathology
8.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068915

ABSTRACT

The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back pain, which poses a substantial burden on both personal quality of life and societal economics. Changes in the number and function of ion channels can disrupt the water and ion balance both inside and outside cells, thereby impacting the physiological functions of tissues and organs. Therefore, maintaining ion homeostasis and stable expression of ion channels within the cellular microenvironment may prove beneficial in the treatment of disc degeneration. Aquaporin (AQP), calcium ion channels, and acid-sensitive ion channels (ASIC) play crucial roles in regulating water, calcium ions, and hydrogen ions levels. These channels have significant effects on physiological and pathological processes such as cellular aging, inflammatory response, stromal decomposition, endoplasmic reticulum stress, and accumulation of cell metabolites. Additionally, Piezo 1, transient receptor potential vanilloid type 4 (TRPV4), tension response enhancer binding protein (TonEBP), potassium ions, zinc ions, and tungsten all play a role in the process of intervertebral disc degeneration. This review endeavors to elucidate alterations in the microenvironment of the nucleus pulposus during intervertebral disc degeneration (IVDD), with a view to offer novel insights and approaches for exploring therapeutic interventions against disc degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Nucleus Pulposus/metabolism , Intervertebral Disc Degeneration/metabolism , Quality of Life , Intervertebral Disc/metabolism , Ion Channels/metabolism , Homeostasis/physiology , Ions/metabolism , Water/metabolism
9.
Biomark Res ; 11(1): 78, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37670392

ABSTRACT

S100A6 (also called calcyclin) is a Ca2+-binding protein that belongs to the S100 protein family. S100A6 has many functions related to the cytoskeleton, cell stress, proliferation, and differentiation. S100A6 also has many interacting proteins that are distributed in the cytoplasm, nucleus, cell membrane, and outside the cell. Almost all these proteins interact with S100A6 in a Ca2+-dependent manner, and some also have specific motifs responsible for binding to S100A6. The expression of S100A6 is regulated by several transcription factors (such as c-Myc, P53, NF-κB, USF, Nrf2, etc.). The expression level depends on the specific cell type and the transcription factors activated in specific physical and chemical environments, and is also related to histone acetylation, DNA methylation, and other epigenetic modifications. The differential expression of S100A6 in various diseases, and at different stages of those diseases, makes it a good biomarker for differential diagnosis and prognosis evaluation, as well as a potential therapeutic target. In this review, we mainly focus on the S100A6 ligand and its transcriptional regulation, molecular function (cytoskeleton, cell stress, cell differentiation), and role as a biomarker in human disease and stem cells.

10.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686041

ABSTRACT

Lower back pain, a leading cause of disability worldwide, is associated with intervertebral disc degeneration (IDD) in approximately 40% of cases. Although nucleus pulposus (NP) cell senescence is a major contributor to IDD, the underlying mechanisms remain unclear. We collected NP samples from IDD patients who had undergone spinal surgery. Healthy and senescent NP tissues (n = 3) were screened using the Pfirrmann grading system combined with immunohistochemistry, as well as hematoxylin and eosin, Safranin O, Alcian blue, and Masson staining. Differentially expressed proteins (DEPs) were identified using quantitative TMT-based proteomics technology. Bioinformatics analyses included gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) analyses. In addition, immunofluorescence was used to verify protein expression. In total, 301 DEPs were identified in senescent NP tissues, including 92 upregulated and 209 downregulated proteins. In GO, DEPs were primarily associated with NF-kappaB transcription factor, extracellular regions, cellular protein metabolic processes, and post-translational protein modification. The enriched KEGG pathways included TGF-ß, Wnt, RAP1, interleukin-17, extracellular matrix-receptor adhesion, and PI3K/Akt signaling pathways. PPI analysis demonstrated interactions between multiple proteins. Finally, immunofluorescence verified the expressions of MMP3, LUM, TIMP1, and CDC42 in senescent NP cells. Our study provides valuable insights into the mechanisms underlying senescent NP tissues in IDD patients. DEPs provide a basis for further investigation of the effects of senescent factors on IDD.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Humans , Intervertebral Disc Degeneration/genetics , Phosphatidylinositol 3-Kinases , Proteomics , Genes, Regulator
11.
Bone Joint Res ; 12(9): 522-535, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37661086

ABSTRACT

Aims: This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). Methods: The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions. Results: A total of 56 EP-DEGs were identified in the differential expression analysis. EP-DEGs were enriched in the extracellular structure organization, ageing, collagen-activated signalling pathway, PI3K-Akt signalling pathway, and AGE-RAGE signalling pathway. PPI network analysis showed that the top ten hub EP-DEGs are closely related to IDD. Correlation analysis also demonstrated a significant correlation between the ten hub EP-DEGs (p<0.05), which were selected to construct TF-gene interaction and TF-miRNA coregulatory networks. In addition, ten candidate drugs were screened for the treatment of IDD. Conclusion: The findings clarify the roles of extracellular proteins in IDD and highlight their potential as promising novel therapeutic targets.

12.
Biomolecules ; 13(7)2023 07 17.
Article in English | MEDLINE | ID: mdl-37509175

ABSTRACT

S100A6, also known as calcyclin, is a low-molecular-weight Ca2+-binding protein from the S100 family that contains two EF-hands. S100A6 is expressed in a variety of mammalian cells and tissues. It is also expressed in lung, colorectal, pancreatic, and liver cancers, as well as other cancers such as melanoma. S100A6 has many molecular functions related to cell proliferation, the cell cycle, cell differentiation, and the cytoskeleton. It is not only involved in tumor invasion, proliferation, and migration, but also the pathogenesis of other non-neoplastic diseases. In this review, we focus on the molecular mechanisms and potential therapeutic targets of S100A6 in tumors, nervous system diseases, leukemia, endometriosis, cardiovascular disease, osteoarthritis, and other related diseases.


Subject(s)
Liver Neoplasms , S100 Calcium Binding Protein A6 , Animals , Female , Humans , Cell Cycle , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Proliferation , Mammals/metabolism , S100 Calcium Binding Protein A6/metabolism , S100 Proteins/metabolism
13.
J Back Musculoskelet Rehabil ; 36(6): 1345-1354, 2023.
Article in English | MEDLINE | ID: mdl-37458019

ABSTRACT

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural disorder of the spine in adolescents, often associated with structural deformities in both coronal and axial positions. Apical vertex rotation (AVR) is one of the main indicators of axial deformity in patients with scoliosis. Currently, there are few studies on the impact of AVR in the treatment of AIS. OBJECTIVE: This study examined the influence of different AVR on AIS after brace treatment. METHODS: Data were collected from 106 AIS participants aged 11-16 years from the orthopedic outpatient clinic of the Second Hospital of Lanzhou University. Two orthopaedic professionals measured the Cobb angle, AVR and spinal mid-line offset before and after brace treatment, and descriptive and linear correlation analyses were used to determine the correlation between AVR and AIS measured parameters. RESULTS: (1) In AIS volunteers with the same AVR, the treatment effect of AIS with lumbar predominant curvature was higher than that of AIS with thoracic predominant curvature. The treatment effect tended to decrease with increasing AVR. (2) Spinal mid-line deviation was associated with AVR. For patients with AIS with I and II degrees of AVR, the treatment effect of spinal mid-line offset after bracing is better. For AIS patients with AVR III degrees and above, the degree of correction of spinal mid-line offset decreases with the continuous correction of Cobb angle. CONCLUSIONS: The efficacy of AIS was found to be related to the severity of AVR. The efficacy of AIS with predominantly lumbar curvature was significantly higher than that of AIS with predominantly thoracic curvature. The efficacy of treatment of mid-line spinal deviation also decreased with increasing AVR.


Subject(s)
Kyphosis , Scoliosis , Humans , Adolescent , Scoliosis/therapy , Rotation , Thoracic Vertebrae , Retrospective Studies , Treatment Outcome
14.
World Neurosurg ; 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37343672

ABSTRACT

BACKGROUND: Programmed cell death (PCD) in the development of spinal cord injury (SCI) is complicated, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and autophagy. It is necessary to make clear the expression levels of PCD and potential molecular targets after SCI for formulating relevant treatment strategies. METHODS: We downloaded the rats' SCI expression matrix GSE45006, and the ssGSEA method was used to analyze the PCD after SCI. Then the related differentially expressed genes (DEGs) were identified, and the gene ontology (GO) and pathway analysis, protein-protein interaction (PPI) network construction, and HUB genes were identified. Finally, the correlation between HUB genes and PCD was analyzed. RESULTS: Apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy increased significantly in acute SCI, and then decreased gradually in the subacute and chronic stages; cuproptosis in acute SCI decreased significantly, and then gradually increased. In addition, we also screened 116 DEGs during the development of SCI. GO and pathway analysis showed that DEGs was related to mitosis and cell cycle. The identified hub genes are closely related to cell apoptosis, necroptosis, pyroptosis, ferroptosis after injury, and autophagy. CONCLUSIONS: PCD occurs differently in different stages after SCI. To inhibit apoptosis, necroptosis, pyroptosis, and ferroptosis after injury and induce autophagy may be the therapeutic strategy. In addition, intervention therapy based on related HUB genes may be the therapeutic target of SCI.

16.
Environ Toxicol ; 38(7): 1565-1576, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37052456

ABSTRACT

BACKGROUND: Circular RNA (circRNA) has been shown to play an important regulatory role in the development of various cancers, including osteosarcoma (OS). However, the role of circRNA ABCC1 (circABCC1) in OS was still poorly understood. The aim of our study was to investigate the role of circABCC1 in OS progression and its potential molecular mechanisms. METHODS: The expression of circABCC1, microRNA-591 (miR-591) and histone deacetylase 4 (HDAC4) in OS tissues or cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB) analyses. In vitro experiments, the viability, proliferation, apoptosis, migration, invasion and autophagy of U2OS and HOS cells were assessed in vitro using cell counting kit-8 (CCK-8) assay, 5-ethynyl-29-deoxyuridine (EdU) assay, flow cytometry (FCM) assay, transwell migration and invasion assays (transwell) and WB assay, respectively. Interactions between circABCC1 and miR-591, miR-591 and HDAC4 were confirmed using a dual luciferase reporter gene assay system. The oncogenic role of circABCC1 in OS in vivo was examined by establishing a tumor xenograft model. RESULTS: CircABCC1 was significantly elevated in OS tissues (about 3.1-folds) and cells (U2OS (about 2.1-folds) and HOS (about 2.8-folds)) compared with the control (p < .05). Silencing of circABCC1 significantly reduced the viability and proliferation, promoted apoptosis, impaired migration and invasion, and increased autophagy of U2OS and HOS cells (p < .05). In addition, miR-591 was confirmed to be a target of circABCC1, exerting an opposite effect to circABCC1 (p < .05). MiR-591 attenuation in U2OS and HOS cells was able to reply to the inhibition of cell proliferation, migration and invasion as well as promotion of cell apoptosis and autophagy mediated by silencing circABCC1 (p < .05). HDAC4 was verified to be the target gene of miR-591 in U2OS and HOS cells and was regulated by the circABCC1/miR-591 axis (p < .05), and restoration of HDAC4 levels in U2OS and HOS cells was able to restore the altered cellular function caused by silencing circABCC1 (p < .05). In addition, knockdown of circABCC1 attenuated tumor growth in vivo (p < .05). CONCLUSION: Silencing of circABCC1 inhibits osteosarcoma progression by attenuating HDAC4 expression through sponging miR-591.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Cell Line, Tumor , Bone Neoplasms/pathology , Osteosarcoma/metabolism , Cell Proliferation/genetics , Histone Deacetylases/genetics , Cell Movement/genetics , Repressor Proteins
17.
Eur Spine J ; 32(12): 4246-4258, 2023 12.
Article in English | MEDLINE | ID: mdl-37115281

ABSTRACT

PURPOSE: Tuberculosis is one of the oldest diseases in human history, and spinal tuberculosis (STB) is the most common form of extrapulmonary tuberculosis. A large number of research has been conducted in this field. However, there has been no bibliometric analysis performed in recent years in STB. The aim of this study was to analyze trends and hotspots in research on STB. METHODS: Publications regarding STB between 1980 and 2022 were extracted from the Web of Science database. CiteSpace (V5.7.R2) and VOSviewer (1.6.10) were used to perform global analyses of the number of publications, countries, institutions, authors, journals, keywords, and cited references. RESULTS: A total of 1262 articles were published between 1980 and 2022. We observed rapid growth in the number of publications since 2010. Spine had the highest number of publications (47, 3.7%). Zhang HQ and Wang XY were key researchers. The Central South University published the most papers (90, 7.1%). China was the leading contributor in this field with 459 publications and 29 H-index. National partnerships are dominated by the USA, and there is a lack of active cooperation between other countries and authors. CONCLUSION: research on STB has achieved great progress, with an increasing number of publications since 2010. Surgical treatment and debridement are current research hots pots, and diagnosis, drug resistance, and kyphosis are likely research frontiers. Cooperation between countries and authors needs to be further strengthened.


Subject(s)
Tuberculosis, Spinal , Humans , Tuberculosis, Spinal/epidemiology , Tuberculosis, Spinal/surgery , Spine/surgery , Bibliometrics , China , Databases, Factual
18.
J Orthop Surg Res ; 18(1): 246, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36967416

ABSTRACT

Scoliosis before the age of 5 years is referred to as early-onset scoliosis (EOS). While causes may vary, EOS can potentially affect respiratory function and lung development as children grow. Moreover, scoliosis can lead to thoracic insufficiency syndrome when aggravated or left untreated. Therefore, spinal thoracic deformities often require intervention in early childhood, and solving these problems requires new methods that include the means for both deformity correction and growth maintenance. Therapeutic strategies for preserving the growing spine and thorax include growth rods, vertically expandable titanium artificial ribs, MAGEC rods, braces and casts. The goals of any growth-promoting surgical strategy are to alter the natural history of cardiorespiratory development, limit the progression of underlying spondylarthrosis deformities and minimize negative changes in spondylothorax biomechanics due to the instrumental action of the implant. This review further elucidates EOS in terms of its aetiology, pathogenesis, pathology and treatment.


Subject(s)
Scoliosis , Humans , Child , Child, Preschool , Scoliosis/etiology , Scoliosis/surgery , Scoliosis/pathology , Spine/abnormalities , Thorax/pathology , Ribs/abnormalities , Ribs/pathology , Ribs/surgery , Prostheses and Implants , Lung/pathology , Treatment Outcome , Titanium
19.
Neuroscience ; 517: 18-25, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36893983

ABSTRACT

N-acetylserotonin (NAS) is a chemical intermediate in melatonin biosynthesis. NAS and its derivative N-(2-(5-hydroxy-1H-indol-3-yl) ethyl)-2-oxopiperidine-3-carboxamide (HIOC) are potential therapeutic agents for traumatic brain injury, autoimmune encephalomyelitis, hypoxic-ischemic encephalopathy, and other diseases. Evidence shows that NAS and its derivative HIOC have neuroprotective properties, and can exert neuroprotective effects by inhibiting oxidative stress, anti-apoptosis, regulating autophagy dysfunction, and anti-inflammatory. In this review, we discussed the neuroprotective effects and related mechanisms of NAS and its derivative HIOC to provide a reference for follow-up research and applications.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Melatonin , Neuroprotective Agents , Animals , Humans , Neuroprotective Agents/pharmacology , Serotonin/pharmacology , Neuroprotection , Melatonin/pharmacology
20.
Exp Neurol ; 361: 114301, 2023 03.
Article in English | MEDLINE | ID: mdl-36538982

ABSTRACT

Traumatic spinal cord injury (TSCI) is a serious nervous system insult, and apoptosis in secondary injury is an important barrier to recovery from TSCI. Heat shock protein family A member 1A (HSPA1A) is a protective protein whose expression is elevated after stress. However, whether HSPA1A can inhibit apoptosis after spinal cord injury, and the potential mechanism of this inhibition, remain unclear. In this study, we established in vivo and in vitro models of TSCI and induced HSPA1A overexpression and silencing. HSPA1A upregulation promoted the recovery of neurological function and pathological morphology at the injury site, enhanced neurological cell survival, and inhibited apoptosis in rats following TSCI. In the in vitro model, HSPA1A overexpression inhibited H2O2-induced apoptosis, indicating that HSPA1A suppressed the expression of Bax, caspase-9, and cleaved-caspase-3, promoted the expression of Bcl-2. Furthermore, inhibition of HSPA1A expression can aggravate H2O2-induced apoptosis. We also found that HSPA1A overexpression activated the Wnt/ß-catenin signaling pathway, and that inhibition of this pathway attenuated the inhibitory effect of HSPA1A overexpression on apoptosis. Together, these results indicate that HSPA1A has neuroprotective effects against TSCI that may be exerted through activation of the Wnt/ß-catenin signaling pathway to inhibit apoptosis.


Subject(s)
Neuroprotective Agents , Spinal Cord Injuries , Animals , Rats , Apoptosis , HSP70 Heat-Shock Proteins/metabolism , Hydrogen Peroxide/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Rats, Sprague-Dawley , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...