Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 34(5): 1790-6, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-23914529

ABSTRACT

Red mud as one kind of aluminum industrial wastes was used as raw material for catalyst preparation. It was activated by acidification in order to enhance its catalytic activity in the system of catalytic ozonation. Furthermore, removal performance and reaction mechanism in degradation of organic pollutants were discussed. Results showed that acid modified red mud had more significant catalytic activity than the raw red mud. The removal efficiency of nitrobenzene by catalytic ozonation with acidified red mud (RM6.0) increased with the increasing ozone concentration. When the ozone concentration was increased from 0.4 mg x L(-1) to 1.7 mg x L(-1), the removal efficiency of nitrobenzene increased from 45% to 92%. There was a consistent effect of water pH on the removal efficiency and the ozone concentration variation. The variation of the removal efficiency depended on the initial water pH. This was because the concentration of OH(-) led to ozone decomposition to generate hydroxyl radicals. The higher water pH value led to the quenching of hydroxyl radicals, resulting in the reduction of catalytic activity of RM6.0. The experimental results of aqueous ozone concentration variation in the presence of RM6.0 and inhibition by hydroxyl radicals indicated that the main reaction mechanism was catalytic ozonation of NB. Firstly, aqueous ozone was absorbed onto the surface of RM6.0, and then the concentrated ozone oxidized NB in water which was with a combination of direct and indirect oxidation. In catalytic reaction, hydroxyl radicals were present, which were generated during the oxidation of NB on the surface of RM6.0.


Subject(s)
Nitrobenzenes/isolation & purification , Ozone/chemistry , Solid Waste , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Catalysis , Hydrogen-Ion Concentration , Nitrobenzenes/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...