Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
ScientificWorldJournal ; 2014: 406154, 2014.
Article in English | MEDLINE | ID: mdl-24683338

ABSTRACT

A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology.


Subject(s)
Nanotubes, Carbon , Spectrum Analysis, Raman/methods , Calibration , Equipment Design , Models, Theoretical , Nanotechnology/methods , Shear Strength , Spectrum Analysis, Raman/instrumentation
2.
Sci Rep ; 3: 3102, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24173107

ABSTRACT

Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(5): 1244-8, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-23905328

ABSTRACT

The present paper studied the methodology of carbon nanotube (CNT) sensor applicable for the strain measurement in microscale. Based on the varieties of polarization configurations of the Raman spectrometers, a series of analytic expressions of CNT sensor were derived by applying the Raman properties of the CNT, such as the strain sensitivity and the polarization selectivity. From the viewpoint of metrology, the sensoring relationships corresponding to different polarization configurations were compared and contrasted with one another, which educed that the "bipolar homology" type is most suitable for the strain measurement where both the incident and scattered lights are continuously controllable and always remain parallel to each other. A new easy-realized control method for this configuration is introduced. The experiments proved that the method presented in this paper can effectively measure the in-plane strain components in microscale by polarized micro-Raman spectroscopy.

4.
J Nanosci Nanotechnol ; 12(4): 3159-64, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22849080

ABSTRACT

An analytical approach is presented to predict the elastic properties of a monolayer graphene nanosheet based on interatomic potential energy and continuum mechanics. The elastic extension and torsional springs are utilized to simulate the stretching and angle variation of carbon-carbon bond, respectively. The constitutive equation of the graphene nanosheet is derived by using the strain energy density, and the analytical formulations for nonzero elastic constants are obtained. The in-plane elastic properties of the monolayer graphene nanosheet are proved to be anisotropic. In addition, Young's moduli, Poisson's ratios and shear modulus of the monolayer graphene nanosheet are calculated according to the force constants derived from Morse potential and AMBER force field, respectively, and they were proved to be chirality-dependent. The comparison with experimental results shows a very agreement.

5.
Nanotechnology ; 22(22): 225704, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21454933

ABSTRACT

Deformation mechanisms of carbon nanotube (CNT) fibres under tensile loading are studied by means of in situ Raman spectroscopy to detect the CNT deformation and stress distributions in the fibres. The G' band in the Raman spectrum responds distinctly to the tensile stress in Raman shift, width and intensity. The G' band changes with the tensile deformation of the fibre at different stages, namely elastic deformation, strengthening and damage-fracture. It is deduced that the individual CNTs only deform elastically without obvious damage or bond breaking. The yield and fracture of fibres can be due to the slippage among the CNTs.

6.
Appl Opt ; 45(25): 6551-9, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16912795

ABSTRACT

We present a new method of regional identification, partition, and integral (RIPI) phase unwrapping for processing images, especially those with low quality, obtained from moiré interferometry experiments. By introducing the principle of preorder traversal of a general tree in data structures and then by applying the idea of a regional integral, the proposed method makes regional partition and phase evaluation much easier and more accurate, and it also overcomes the common faults that can occur when conventional approaches, such as line defects, are used. Examples are given to demonstrate the advantage and applicability of the proposed RIPI method when processing experimental images. It is shown that the proposed method works well for global phase distribution, and, at the same time, local mutational information is preserved and limited to its vicinity without affecting other parts.

SELECTION OF CITATIONS
SEARCH DETAIL
...