Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 178: 108069, 2023 08.
Article in English | MEDLINE | ID: mdl-37419059

ABSTRACT

In this study, we developed a practical approach to augment elemental carbon (EC) emissions to improve the reproducibility of the most recent air quality with photochemical grid modeling in support of source-receptor relationship analysis. We demonstrated the usefulness of this approach with a series of simulations for EC concentrations over Northeast Asia during the 2016 Korea-United States Air Quality study. Considering the difficulty of acquiring EC observational data in foreign countries, our approach takes two steps: (1) augmenting upwind EC emissions based on simulated upwind contributions and observational data at a downwind EC monitor considered as the most representative monitor for upwind influences and (2) adjusting downwind EC emissions based on simulated downwind contributions, including the effects of updated upwind emissions from the first step and observational data at the downwind EC monitors. The emission adjustment approach resulted in EC emissions 2.5 times higher than the original emissions in the modeling domain. The EC concentration in the downwind area was observed to be 1.0 µg m-3 during the study period, while the simulated EC concentration was 0.5 µg m-3 before the emission adjustment. After the adjustment, the normalized mean error of the daily mean EC concentration decreased from 48 % to 22 % at ground monitor locations. We found that the EC simulation results were improved at high altitudes, and the contribution of the upwind areas was greater than that of the downwind areas for EC concentrations downwind with or without emission adjustment. This implies that collaborating with upwind regions is essential to alleviate high EC concentrations in downwind areas. The developed emission adjustment approach can be used for any upwind or downwind area when transboundary air pollution mitigation is needed because it provides better reproducibility of the most recent air quality through modeling with improved emission data.


Subject(s)
Air Pollutants , Air Pollution , United States , Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Reproducibility of Results , Environmental Monitoring/methods , Air Pollution/analysis , Carbon/analysis , Asia
2.
Sci Total Environ ; 880: 163309, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37030356

ABSTRACT

Changes in PM2.5 concentrations are influenced by interwoven impacts of key drivers (e.g., meteorology, local emissions, and regional emissions). However, it is challenging to quantitatively disentangle their impacts individually at once. Therefore, we introduced a multifaceted approach (i.e., meteorology vs. emissions and self-contribution vs. long-range transport) to analyze the effects of major drivers for long- and short-term PM2.5 concentration changes based on observation and simulation in the month of January during 2016-2021 in Northeast Asia. For the simulations, we conducted modeling with the WRF-CMAQ system. The observed PM2.5 concentrations in China and South Korea in January 2021 decreased by 13.7 and 9.8 µg/m3, respectively, compared to those in January 2016. Emission change was the dominant factor to reduce PM2.5 concentrations in China (-115%) and South Korea (-74%) for the 6 years. However, the short-term changes in PM2.5 concentrations between January of 2020-2021 were mainly driven by meteorological conditions in China (-73%) and South Korea (-68%). At the same time, in South Korea located in downwind area, the impact of long-range transport from upwind area (LTI) decreased by 55% (9.6 µg/m3) over the 6 years whereas the impact of local emissions increased (+2.9 µg/m3/year) during 2016-2019 but decreased (-4.5 µg/m3/year) during 2019-2021. Additionally, PM2.5 concentrations in the upwind area showed a positive relationship with LTIs. However, for the days when westerly winds became weak in the downwind area, high PM2.5 concentrations in upwind area did not lead to high LTIs. These results imply that the decline of PM2.5 concentrations in South Korea was significantly affected by a combination of emission reduction in upwind area and meteorological conditions that hinder long-range transport. The proposed multifaceted approach can identify the main drivers of PM2.5 concentration change in a region by considering the regional characteristics.

3.
Environ Pollut ; 320: 120997, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36621711

ABSTRACT

This study quantitatively analyzed the role of vertical mixing in long-range transport (LRT) of PM2.5 during its high concentration episode in Northeast Asia toward the end of February 2014. The PM2.5 transport process from an upwind to downwind area was examined using the Community Multi-scale Air Quality (CMAQ) modeling system with its instrumented tool and certain code modifications. We identified serial distinctive roles of vertical advection (ZADV) and diffusion (VDIF) processes. The surface PM2.5 in an upwind area became aloft by VDIF- during daytime-to the planetary boundary layer (PBL) altitude of 1 km or lower. In contrast, ZADV updraft effectively transported PM2.5 vertically to an altitude of 2-3 km above the PBL. Furthermore, we found that the VDIF and ZADV in the upwind area synergistically promoted the vertical mixing of air pollutants up to an altitude of 1 km and higher. The aloft PM2.5 in the upwind area was then transported to the downwind area by horizontal advection (HADV), which was faster than HADV at the surface layer. Additionally, VDIF and ZADV over the downwind area mixed down the aloft PM2.5 on the surface. During this period, the VDIF and ZADV increased the PM2.5 concentrations in the downwind area by up to 15 µg·m-3 (15%) and 101 µg·m-3 (60%), respectively. This study highlights the importance of vertical mixing on long-range PM2.5 transport and warrants more in-depth model analysis with three-dimensional observations to enhance its comprehensive understanding.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollution/analysis , Asia , China
4.
Chemosphere ; 268: 129369, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33387943

ABSTRACT

A long-lasting severe haze event was observed over the Seoul metropolitan region (SMR: Seoul, Incheon, and Gyeonggi-do), South Korea, in the winter of 2013 (January 12-16). We comprehensively investigated the atmospheric processes affecting particulate matter (PM) distributions during the haze event, as well as its impact on human health in the study area. These analyses were performed based on meteorological and PM observations and numerical modeling, which included the WRF-CMAQ modeling system and the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE). High PM10 concentrations during the haze event were mostly observed in the western and southern parts of the SMR. Significant differences (60-70 µg m-3) in the mean PM2.5 concentrations for haze and non-haze days were predicted mainly in the west-northwest areas of SMR. This might be primarily due to the pollutant transport (horizontal and vertical) from large emission sources (e.g., Chinese emissions) and, in part, their local accumulation (by local emissions) under high-pressure conditions and slow-moving air flows (i.e., blocking effect) around SMR. In addition, the enhanced PM2.5 concentrations in the study area during the haze event led to an increase in the number of premature deaths.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Environmental Monitoring , Humans , Particulate Matter/analysis , Republic of Korea , Seoul
5.
Sci Rep ; 10(1): 22112, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335171

ABSTRACT

In January 2020, anthropogenic emissions in Northeast Asia reduced due to the COVID-19 outbreak. When outdoor activities of the public were limited, PM2.5 concentrations in China and South Korea between February and March 2020 reduced by - 16.8 µg/m3 and - 9.9 µg/m3 respectively, compared with the average over the previous three years. This study uses air quality modeling and observations over the past four years to separate the influence of reductions in anthropogenic emissions from meteorological changes and emission control policies on this PM2.5 concentration change. Here, we show that the impacts of anthropogenic pollution reduction on PM2.5 were found to be approximately - 16% in China and - 21% in South Korea, while those of meteorology and emission policies were - 7% and - 8% in China, and - 5% and - 4% in South Korea, respectively. These results show that the influence on PM2.5 concentration differs across time and region and according to meteorological conditions and emission control policies. Finally, the influence of reductions in anthropogenic emissions was greater than that of meteorological conditions and emission policies during COVID-19 period.


Subject(s)
Air Pollution/legislation & jurisprudence , COVID-19/prevention & control , Environmental Monitoring/legislation & jurisprudence , Meteorology/legislation & jurisprudence , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Pollution/prevention & control , Humans , Republic of Korea , SARS-CoV-2/pathogenicity , Vehicle Emissions/analysis
6.
Environ Pollut ; 247: 763-774, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30721867

ABSTRACT

The source apportionment of volatile organic compounds (VOCs) was examined using receptor models (positive matrix factorization and chemical mass balance) and a chemical transport model (CTM). The receptor model-based analysis was performed using the datasets collected from four different sites from the megacity of Seoul during the years 2013-2015. The contributions of VOC emission sources to ozone (O3) and PM2.5 concentrations and the subsequent health effects in the study area were also assessed during a photochemically active period (June 2015) using a three-dimensional CTM, Community Multi-scale Air Quality (CMAQ), and the Environmental Benefits Mapping and Analysis Program (BenMAP). The solvent use and the on-road mobile emission sources were found to exert dominant controls on the VOC levels observed in the target city. VOCs transported from regions outside of Seoul accounted for a significant proportion (up to approximately 35%) of ambient VOC levels during the study period. The solvent use accounted for 3.4% of the ambient O3 concentrations during the day (daily mean of 2.6%) and made insignificant contributions to PM2.5 (<1%) during the simulation period. Biogenic VOC made insignificant contributions to O3 (<1%) and a small contribution to PM2.5 during the day (5.6% with a daily mean of 2.4%). The number of premature deaths attributed indirectly (O3 and PM2.5 formations via the oxidation of VOCs) to solvent use is expected to be significant.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Exposure/analysis , Volatile Organic Compounds/analysis , Air Pollution/analysis , Cities , Environmental Exposure/statistics & numerical data , Environmental Monitoring/methods , Ozone/analysis , Particulate Matter/analysis , Seoul
7.
Nat Commun ; 9(1): 31, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29295978

ABSTRACT

Bacterial-fungal interactions are widely found in distinct environments and contribute to ecosystem processes. Previous studies of these interactions have mostly been performed in soil, and only limited studies of aerial plant tissues have been conducted. Here we show that a seed-borne plant pathogenic bacterium, Burkholderia glumae (Bg), and an air-borne plant pathogenic fungus, Fusarium graminearum (Fg), interact to promote bacterial survival, bacterial and fungal dispersal, and disease progression on rice plants, despite the production of antifungal toxoflavin by Bg. We perform assays of toxoflavin sensitivity, RNA-seq analyses, lipid staining and measures of triacylglyceride content to show that triacylglycerides containing linolenic acid mediate resistance to reactive oxygen species that are generated in response to toxoflavin in Fg. As a result, Bg is able to physically attach to Fg to achieve rapid and expansive dispersal to enhance disease severity.


Subject(s)
Air Microbiology , Burkholderia/physiology , Fusarium/physiology , Oryza/microbiology , Seeds/microbiology , Burkholderia/metabolism , Drug Resistance, Fungal/drug effects , Fusarium/classification , Fusarium/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Host-Pathogen Interactions , Microbial Interactions , Mutation , Phylogeny , Plant Diseases/microbiology , Pyrimidinones/metabolism , Pyrimidinones/pharmacology , Triazines/metabolism , Triazines/pharmacology
8.
J Nanosci Nanotechnol ; 11(8): 7100-3, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22103133

ABSTRACT

Nanofibers containing cell nutrients (PGDs) were fabricated by mixing 5 wt% poly(epsilon-caprolactone) (P), 4 wt% gelatin (G), and 0-2.4 wt% Dulbecco's Modified Eagle's Medium (D). The contact angles showed a considerable decrease from 118.4 degrees on the P scaffold to 17.6 degrees on PGD1.6 (containing 1.6 wt% D). The weight loss ratios between PGD1.6 and the P nanofiber, and between PGD1.6 and the PG nanofiber by degradation after 28 days were approximately 3.1 and 1.4, respectively. The rate of cell proliferation on PGD1.6 was greater than that on the PG nanofiber by 14% and 38% for the exchanged and unexchanged culture media, respectively. The physicochemical measurement results showed that the PGDs exhibited enhanced hydrophilic properties and rapid biodegradation. The PGD nanofibers with increasing D content showed better conditions for long-term cell viability. The growth mechanism of the cells on the PGDs was explained by an attachment and growth process.


Subject(s)
Biocompatible Materials , Cell Survival , Nanofibers , Animals , CHO Cells , Cell Proliferation , Cricetinae , Cricetulus , Microscopy, Electron, Scanning
9.
Acta Biomater ; 6(2): 519-25, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19607941

ABSTRACT

The hydrophobic and hydrophilic properties of the surface of poly-ether sulfone (PES) films were controlled by an atmospheric pressure plasma (AP) treatment using reactive gases (Ar/H(2) and Ar/O(2)). The surface properties of the Ar/H(2) and Ar/O(2) in series AP-treated PES films showed higher surface roughness (approximately 120%), surface energy (approximately 30%) and hydrophilic properties (oxygen content approximately 10%) than the Ar/O(2) AP-treated PES film. The protein staining results confirmed that an activated region on the patterned PES film with high selectivity and sensitivity was well-defined and formed. This method is suitable for fabricating flexible protein adhesive chips with uniform biomolecular adhesive properties.


Subject(s)
Proteins/chemistry , Atmospheric Pressure , Protein Array Analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...