Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(25): eado2442, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905333

ABSTRACT

Atomically dispersed Pt-group metals are promising as nanocatalysts because of their unique geometric structures and ultrahigh atomic utilization. However, loading isolated Pt-group metals in single-atom alloys (SAAs) with distinctive bimetallic sites is challenging. In this study, we present amorphous mesoporous Ni boride (Ni-B) as an ideal substrate to uniformly disperse Pt atoms with tunable loadings (1.7 to 12.2 wt %). The effect of the morphology, composition, and crystal phase of the Ni-B host on the growth and dispersion of Pt atoms is discussed. The resulting amorphous Pt-Ni-B mesoporous nanospheres exhibit superior electrocatalytic H2 evolution performance in acidic media. This strategy holds the potential to synthesize a diverse library of mesoporous amorphous Pt-group SAAs, by leveraging functional amorphous nanostructured 3d transition-metal borides as substrates, thereby proposing a comprehensive strategy to control atomically dispersed Pt-group metals.

2.
Nat Commun ; 15(1): 4351, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806498

ABSTRACT

Low-cost detection systems are needed for the identification of microplastics (MPs) in environmental samples. However, their rapid identification is hindered by the need for complex isolation and pre-treatment methods. This study describes a comprehensive sensing platform to identify MPs in environmental samples without requiring independent separation or pre-treatment protocols. It leverages the physicochemical properties of macroporous-mesoporous silver (Ag) substrates templated with self-assembled polymeric micelles to concurrently separate and analyze multiple MP targets using surface-enhanced Raman spectroscopy (SERS). The hydrophobic layer on Ag aids in stabilizing the nanostructures in the environment and mitigates biofouling. To monitor complex samples with multiple MPs and to demultiplex numerous overlapping patterns, we develop a neural network (NN) algorithm called SpecATNet that employs a self-attention mechanism to resolve the complex dependencies and patterns in SERS data to identify six common types of MPs: polystyrene, polyethylene, polymethylmethacrylate, polytetrafluoroethylene, nylon, and polyethylene terephthalate. SpecATNet uses multi-label classification to analyze multi-component mixtures even in the presence of various interference agents. The combination of macroporous-mesoporous Ag substrates and self-attention-based NN technology holds potential to enable field monitoring of MPs by generating rich datasets that machines can interpret and analyze.

3.
Chem Sci ; 15(14): 5368-5375, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577364

ABSTRACT

The production of vanillin from biomass offers a sustainable route for synthesizing daily-use chemicals. However, achieving sunlight-driven vanillin synthesis through H2O activation in an aqueous environment poses challenges due to the high barrier of H2O dissociation. In this study, we have successfully developed an efficient approach for gram-scale vanillin synthesis in an aqueous reaction, employing Mn-defected γ-MnO2 as a photocatalyst at room temperature. Density functional theory calculations reveal that the presence of defective Mn species (Mn3+) significantly enhances the adsorption of vanillyl alcohol and H2O onto the surface of the γ-MnO2 catalyst. Hydroxyl radical (˙OH) species are formed through H2O activation with the assistance of sunlight, playing a pivotal role as oxygen-reactive species in the oxidation of vanillyl alcohol into vanillin. The Mn-defected γ-MnO2 catalyst exhibits exceptional performance, achieving up to 93.4% conversion of vanillyl alcohol and 95.7% selectivity of vanillin under sunlight. Notably, even in a laboratory setting during the daytime, the Mn-defected γ-MnO2 catalyst demonstrates significantly higher catalytic performance compared to the dark environment. This work presents a highly effective and promising strategy for low-cost and environmentally benign vanillin synthesis.

4.
ACS Nano ; 18(18): 11675-11687, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38651298

ABSTRACT

Ultrathin MXene-based films exhibit superior conductivity and high capacitance, showing promise as electrodes for flexible supercapacitors. This work describes a simple method to enhance the performance of MXene-based supercapacitors by expanding and stabilizing the interlayer space between MXene flakes while controlling the functional groups to improve the conductivity. Ti3C2Tx MXene flakes are treated with bacterial cellulose (BC) and NaOH to form a composite MXene/BC (A-M/BC) electrode with a microporous interlayer and high surface area (62.47 m2 g-1). Annealing the films at low temperature partially carbonizes BC, increasing the overall electrical conductivity of the films. Improvement in conductivity is also attributed to the reduction of -F, -Cl, and -OH functional groups, leaving -Na and -O functional groups on the surface. As a result, the A-M/BC electrode demonstrates a capacitance of 594 F g-1 at a current density of 1 A g-1 in 3 M H2SO4, which represents a ∼2× increase over similarly processed films without BC (309 F g-1) or pure MXene (298 F g-1). The corresponding device has an energy density of 9.63 Wh kg-1 at a power density of 250 W kg-1. BC is inexpensive and enhances the overall performance of MXene-based film electrodes in electronic devices. This method underscores the importance of functional group regulation in enhancing MXene-based materials for energy storage.

5.
Angew Chem Int Ed Engl ; 63(24): e202404505, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38598471

ABSTRACT

Ammonia borane (AB) with 19.6 wt % H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2 ⋅ molmetal ⋅ min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrates magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8 % over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.

6.
ACS Appl Mater Interfaces ; 16(15): 19081-19093, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38442339

ABSTRACT

Rapid and efficient vascularization is still considerably challenging for a porous ß-tricalcium phosphate (ß-TCP) scaffold to achieve. To overcome this challenge, branched channels were created in the porous ß-TCP scaffold by using 3D printing and a template-casting method to facilitate the instant flow of blood supply. Human bone mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were seeded in the channeled porous scaffolds and characterized through a double-stranded DNA (dsDNA) assay, alkaline phosphatase (ALP) assay, and cell migration. Channeled porous ß-TCP scaffolds were then implanted in the subcutaneous pockets of mice. Histological staining and immunohistochemical staining on vascularization and bone-related markers were carried out on the embedded paraffin sections. Results from in vitro experiments showed that branched channels significantly promoted HUVECs' infiltration, migration, proliferation, and angiogenesis, and also promoted the proliferation and osteogenesis differentiation of hBMSCs. In vivo implantation results showed that, in the early stage after implantation, cells significantly migrated into branched channeled scaffolds. More matured blood vessels formed in the branched channeled scaffolds compared to that in nonchanneled and straight channeled scaffolds. Beside promoting vascularization, the branched channels also stimulated the infiltration of bone-related cells into the scaffolds. These results suggested that the geometric design of branched channels in the porous ß-TCP scaffold promoted rapid vascularization and potentially stimulated bone cells recruitment.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Mice , Humans , Animals , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Porosity , Neovascularization, Physiologic , Calcium Phosphates/chemistry , Osteogenesis , Human Umbilical Vein Endothelial Cells , Neovascularization, Pathologic
7.
ACS Nano ; 18(5): 4308-4319, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38261610

ABSTRACT

The intrinsic roadblocks for designing promising Pt-based oxygen reduction reaction (ORR) catalysts emanate from the strong scaling relationship and activity-stability-cost trade-offs. Here, a carbon-supported Pt nanoparticle and a Mn single atom (PtNP-MnSA/C) as in situ constructed PtNP-MnSA pairs are demonstrated to be an efficient catalyst to circumvent the above seesaws with only ∼4 wt % Pt loadings. Experimental and theoretical investigations suggest that MnSA functions not only as the "assist" for Pt sites to cooperatively facilitate the dissociation of O2 due to the strong electronic polarization, affording the dissociative pathway with reduced H2O2 production, but also as an electronic structure "modulator" to downshift the d-band center of Pt sites, alleviating the overbinding of oxygen-containing intermediates. More importantly, MnSA also serves as a "stabilizer" to endow PtNP-MnSA/C with excellent structural stability and low Fenton-like reactivity, resisting the fast demetalation of metal sites. As a result, PtNPs-MnSA/C shows promising ORR performance with a half-wave potential of 0.93 V vs reversible hydrogen electrode and a high mass activity of 1.77 A/mgPt at 0.9 V in acid media, which is 19 times higher than that of commercial Pt/C and only declines by 5% after 80,000 potential cycles. Specifically, PtNPs-MnSA/C reaches a power density of 1214 mW/cm2 at 2.87 A/cm2 in an H2-O2 fuel cell.

8.
ACS Nano ; 17(22): 22744-22754, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37939033

ABSTRACT

Efficient and durable electrocatalysts fabricated by using nanosized nonprecious-metal-based materials have attracted considerable attention for use in the oxygen evolution reaction (OER). Understanding performance disparities and structure-property relationships of various nonprecious-metal-based nanostructures is crucial for optimizing their applications. Herein, CoP nanoparticles encompassed within a CoFeP shell (named CoP/CoFeP) are fabricated. The mesoporous CoFeP shell enables effective mass transport, affords abundant active sites, and ensures the accessibility of hybrid interfaces between CoP and CoFeP. Therefore, encased CoP/CoFeP nanocubes exhibit excellent OER catalytic activity with an overpotential of 266 mV at a current density of 10 mA cm-2 in alkaline media, superior to reference hollow CoFeP nanocubes and commercial RuO2. Experimental characterization and theoretical calculations show that the encased structure of CoP/CoFeP with a rich Fe-doped shell enables electronic interactions between CoP and CoFeP, as well as accelerates structural reconstruction that exposes more active sites, yielding an enhanced OER performance. This study aims to inspire further work on nonprecious-metal catalysts with tailored nanostructures and electronic properties for the OER.

9.
Chem Sci ; 14(46): 13402-13409, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38033900

ABSTRACT

Developing innovative catalysts for efficiently activating O2 into singlet oxygen (1O2) is a cutting-edge field with the potential to revolutionize green chemical synthesis. Despite its potential, practical implementation remains a significant challenge. In this study, we design a series of nitrogen (N)-doped manganese oxides (Ny-MnO2, where y represents the molar amount of the N precursor used) nanocatalysts using compartmentalized-microemulsion crystallization followed by post-calcination. These nanocatalysts demonstrate the remarkable ability to directly produce 1O2 at room temperature without the external fields. By strategically incorporating defect engineering and interstitial N, the concentration of surface oxygen atoms (Os) in the vicinity of oxygen vacancy (Ov) reaches 51.1% for the N55-MnO2 nanocatalyst. This feature allows the nanocatalyst to expose a substantial number of Ov and interstitial N sites on the surface of N55-MnO2, facilitating effective chemisorption and activation of O2. Verified through electron paramagnetic resonance spectroscopy and reactive oxygen species trapping experiments, the spontaneous generation of 1O2, even in the absence of light, underscores its crucial role in aerobic oxidation. Density functional theory calculations reveal that an increased Ov content and N doping significantly reduce the adsorption energy, thereby promoting chemisorption and excitation of O2. Consequently, the optimized N55-MnO2 nanocatalyst enables room-temperature aerobic oxidation of alcohols with a yield surpassing 99%, representing a 6.7-fold activity enhancement compared to ε-MnO2 without N-doping. Furthermore, N55-MnO2 demonstrates exceptional recyclability for the aerobic oxidative conversion of benzyl alcohol over ten cycles. This study introduces an approach to spontaneously activate O2 for the green synthesis of fine chemicals.

11.
Chem Sci ; 14(29): 7956-7965, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37502332

ABSTRACT

Composite polymer electrolytes (CPEs) with high ionic conductivity and favorable electrolyte/electrode interfacial compatibility are promising alternatives to liquid electrolytes. However, severe parasitic reactions in the Li/electrolyte interface and the air-unstable inorganic fillers have hindered their industrial applications. Herein, surface-edge opposite charged Laponite (LAP) multilayer particles with high air stability were grafted with imidazole ionic liquid (IL-TFSI) to enhance the thermal, mechanical, and electrochemical performances of polyethylene oxide (PEO)-based CPEs. The electrostatic repulsion between multilayers of LAP-IL-TFSI enables them to be easily penetrated by PEO segments, resulting in a pronounced amorphous region in the PEO matrix. Therefore, the CPE-0.2LAP-IL-TFSI exhibits a high ionic conductivity of 1.5 × 10-3 S cm-1 and a high lithium-ion transference number of 0.53. Moreover, LAP-IL-TFSI ameliorates the chemistry of the solid electrolyte interphase, significantly suppressing the growth of lithium dendrites and extending the cycling life of symmetric Li cells to over 1000 h. As a result, the LiFePO4||CPE-0.2LAP-IL-TFSI||Li cell delivers an outstanding capacity retention of 80% after 500 cycles at 2C at 60 °C. CPE-LAP-IL-TFSI also shows good compatibility with high-voltage LiNi0.8Co0.1Mn0.1O2 cathodes.

12.
Nat Commun ; 14(1): 4182, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443103

ABSTRACT

Multimetallic alloys (MMAs) with various compositions enrich the materials library with increasing diversity and have received much attention in catalysis applications. However, precisely shaping MMAs in mesoporous nanostructures and mapping the distributions of multiple elements remain big challenge due to the different reduction kinetics of various metal precursors and the complexity of crystal growth. Here we design a one-pot wet-chemical reduction approach to synthesize core-shell motif PtPdRhRuCu mesoporous nanospheres (PtPdRhRuCu MMNs) using a diblock copolymer as the soft template. The PtPdRhRuCu MMNs feature adjustable compositions and exposed porous structures rich in highly entropic alloy sites. The formation processes of the mesoporous structures and the reduction and growth kinetics of different metal precursors of PtPdRhRuCu MMNs are revealed. The PtPdRhRuCu MMNs exhibit robust electrocatalytic hydrogen evolution reaction (HER) activities and low overpotentials of 10, 13, and 28 mV at a current density of 10 mA cm-2 in alkaline (1.0 M KOH), acidic (0.5 M H2SO4), and neutral (1.0 M phosphate buffer solution (PBS)) electrolytes, respectively. The accelerated kinetics of the HER in PtPdRhRuCu MMNs are derived from multiple compositions with synergistic interactions among various metal sites and mesoporous structures with excellent mass/electron transportation characteristics.


Subject(s)
Alloys , Nanospheres , Catalysis , Crystallization , Electrons , Hydrogen
13.
ACS Nano ; 17(14): 13017-13043, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37367960

ABSTRACT

Controlling the synthesis of metal nanostructures is one approach for catalyst engineering and performance optimization in electrocatalysis. As an emerging class of unconventional electrocatalysts, two-dimensional (2D) metallene electrocatalysts with ultrathin sheet-like morphology have gained ever-growing attention and exhibited superior performance in electrocatalysis owing to their distinctive properties originating from structural anisotropy, rich surface chemistry, and efficient mass diffusion capability. Many significant advances in synthetic methods and electrocatalytic applications for 2D metallenes have been obtained in recent years. Therefore, an in-depth review summarizing the progress in developing 2D metallenes for electrochemical applications is highly needed. Unlike most reported reviews on the 2D metallenes, this review starts by introducing the preparation of 2D metallenes based on the classification of the metals (e.g., noble metals, and non-noble metals) instead of synthetic methods. Some typical strategies for preparing each kind of metal are enumerated in detail. Then, the utilization of 2D metallenes in electrocatalytic applications, especially in the electrocatalytic conversion reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, fuel oxidation reaction, CO2 reduction reaction, and N2 reduction reaction, are comprehensively discussed. Finally, current challenges and opportunities for future research on metallenes in electrochemical energy conversion are proposed.

14.
Angew Chem Int Ed Engl ; 62(40): e202305371, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37291046

ABSTRACT

Ammonia borane (AB) is a promising material for chemical H2 storage owing to its high H2 density (up to 19.6 wt %). However, the development of an efficient catalyst for driving H2 evolution through AB hydrolysis remains challenging. Therefore, a visible-light-driven strategy for generating H2 through AB hydrolysis was implemented in this study using Ni-Pt nanoparticles supported on phosphorus-doped TiO2 (Ni-Pt/P-TiO2 ) as photocatalysts. Through surface engineering, P-TiO2 was prepared by phytic-acid-assisted phosphorization and then employed as an ideal support for immobilizing Ni-Pt nanoparticles via a facile co-reduction strategy. Under visible-light irradiation at 283 K, Ni40 Pt60 /P-TiO2 exhibited improved recyclability and a high turnover frequency of 967.8 mol H 2 ${{_{{\rm H}{_{2}}}}}$ molPt -1 min-1 . Characterization experiments and density functional theory calculations indicated that the enhanced performance of Ni40 Pt60 /P-TiO2 originated from a combination of the Ni-Pt alloying effect, the Mott-Schottky junction at the metal-semiconductor interface, and strong metal-support interactions. These findings not only underscore the benefits of utilizing multipronged effects to construct highly active AB-hydrolyzing catalysts, but also pave a path toward designing high-performance catalysts by surface engineering to modulate the electronic metal-support interactions for other visible-light-induced reactions.

15.
J Am Chem Soc ; 145(11): 6079-6086, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36855832

ABSTRACT

Amorphous noble metals with high surface areas have attracted significant interest as heterogeneous catalysts due to the numerous dangling bonds and abundant unsaturated surface atoms created by the amorphous phase. However, synthesizing amorphous noble metals with high surface areas remains a significant challenge due to strong isotropic metallic bonds. This paper describes the first example of a mesoporous amorphous noble metal alloy [iridium-tellurium (IrTe)] obtained using a micelle-directed synthesis method. The resulting mesoporous amorphous IrTe electrocatalyst exhibits excellent performance in the electrochemical N2 reduction reaction. The ammonia yield rate is 34.6 µg mg-1 h-1 with a Faradaic efficiency of 11.2% at -0.15 V versus reversible hydrogen electrode in 0.1 M HCl solution, outperforming comparable crystalline and Ir metal counterparts. The interconnected porous scaffold and amorphous nature of the alloy create a complementary effect that simultaneously enhances N2 absorption and suppresses the hydrogen evolution reaction. According to theoretical simulations, incorporating Te in the IrTe alloy effectively strengthens the adsorption of N2 and lowers the Gibbs free energy for the rate-limiting step of the electrocatalytic N2 reduction reaction. Mesoporous chemistry enables a new route to achieve high-performance amorphous metalloid alloys with properties that facilitate the selective electrocatalytic reduction of N2.

16.
Chem Commun (Camb) ; 59(30): 4515-4518, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36974954

ABSTRACT

Pyrolysis-free metal-organic frameworks (MOFs) with optimized particle sizes were used as capacitive deionization (CDI) materials in oxygenated saline water. Upon decreasing the particle size of the MOFs, excellent cycling stability and higher CDI performance were achieved. This was possibly due to the improvement in charge transfer and electrolyte permeation, uncovering the significance of particle size control in improving CDI performance.

17.
ACS Nano ; 17(4): 3346-3357, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36744876

ABSTRACT

Construction of a well-defined mesoporous nanostructure is crucial for applying nonnoble metals in catalysis and biomedicine owing to their highly exposed active sites and accessible surfaces. However, it remains a great challenge to controllably synthesize superparamagnetic CoFe-based mesoporous nanospheres with tunable compositions and exposed large pores, which are sought for immobilization or adsorption of guest molecules for magnetic capture, isolation, preconcentration, and purification. Herein, a facile assembly strategy of a block copolymer was developed to fabricate a mesoporous CoFeB amorphous alloy with abundant metallic Co/Fe atoms, which served as an ideal scaffold for well-dispersed loading of Au nanoparticles (∼3.1 nm) via the galvanic replacement reaction. The prepared Au-CoFeB possessed high saturation magnetization as well as uniform and large open mesopores (∼12.5 nm), which provided ample accessibility to biomolecules, such as nucleic acids, enzymes, proteins, and antibodies. Through this distinctive combination of superparamagnetism (CoFeB) and biofavorability (Au), the resulting Au-CoFeB was employed as a dispersible nanovehicle for the direct capture and isolation of p53 autoantibody from serum samples. Highly sensitive detection of the autoantibody was achieved with a limit of detection of 0.006 U/mL, which was 50 times lower than that of the conventional p53-ELISA kit-based detection system. Our assay is capable of quantifying differential expression patterns for detecting p53 autoantibodies in ovarian cancer patients. This assay provides a rapid, inexpensive, and portable platform with the potential to detect a wide range of clinically relevant protein biomarkers.


Subject(s)
Metal Nanoparticles , Female , Humans , Metal Nanoparticles/chemistry , Autoantibodies , Gold/chemistry , Tumor Suppressor Protein p53 , Magnetic Iron Oxide Nanoparticles
18.
Bioengineering (Basel) ; 10(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36671668

ABSTRACT

The lack of physiologically relevant human esophageal cancer models has as a result that many esophageal cancer studies are encountering major bottleneck challenges in achieving breakthrough progress. To address the issue, here we engineered a 3D esophageal tumor tissue model using a biomimetic decellularized esophageal matrix in a customized bioreactor. To obtain a biomimetic esophageal matrix, we developed a detergent-free, rapid decellularization method to decellularize porcine esophagus. We characterized the decellularized esophageal matrix (DEM) and utilized the DEM for the growth of esophageal cancer cell KYSE30 in well plates and the bioreactor. We then analyzed the expression of cancer-related markers of KYSE30 cells and compared them with formalin-fixed, paraffin-embedded (FFPE) esophageal squamous cell carcinoma (ESCC) tissue biospecimens. Our results show that the detergent-free decellularization method preserved the esophageal matrix components and effectively removed cell nucleus. KYSE30 cancer cells proliferated well on and inside the DEM. KYSE30 cells cultured on the DEM in the dynamic bioreactor show different cancer marker expressions than those in the static well plate, and also share some similarities to the FFPE-ESCC biospecimens. These findings built a foundation with potential for further study of esophageal cancer behavior in a biomimetic microenvironment using this new esophageal cancer model.

19.
Small ; 18(33): e2203411, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35863911

ABSTRACT

Controlling the morphology, composition, and crystalline phase of mesoporous nonnoble metal catalysts is essential for improving their performance. Herein, well-defined P- and B-codoped NiFe alloy mesoporous nanospheres (NiFeB-P MNs) with an adjustable Ni/Fe ratio and large mesopores (11 nm) are synthesized via soft-template-based chemical reduction and a subsequent phosphine-vapor-based phosphidation process. Earth-abundant NiFe-based materials are considered promising electrocatalysts for the oxygen evolution reaction (OER) because of their low cost and high intrinsic catalytic activity. The resulting NiFeB-P MNs exhibit a low OER overpotential of 252 mV at 10 mA cm-2 , which is significantly smaller than that of B-doped NiFe MNs (274 mV) and commercial RuO2 (269 mV) in alkaline electrolytes. Thus, this work highlights the practicality of designing mesoporous nonnoble metal structures and the importance of incorporating P in metallic-B-based alloys to modify their electronic structure for enhancing their intrinsic activity.

20.
Small Methods ; 5(10): e2100679, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34927951

ABSTRACT

2D heterostructures exhibit a considerable potential in electrolytic water splitting due to their high specific surface areas, tunable electronic properties, and diverse hybrid compositions. However, the fabrication of well-defined 2D mesoporous amorphous-crystalline heterostructures with highly active heterointerfaces remains challenging. Herein, an efficient 2D heterostructure consisting of amorphous nickel boron oxide (Ni-Bi ) and crystalline mesoporous iridium (meso-Ir) is designed for water splitting, referred to as Ni-Bi /meso-Ir. Benefiting from well-defined 2D heterostructures and strong interfacial coupling, the resulting mesoporous dual-phase Ni-Bi /meso-Ir possesses abundant catalytically active heterointerfaces and boosts the exposure of active sites, compared to their crystalline and amorphous mono-counterparts. The electronic state of the iridium sites is tuned favorably by hybridizing with Ni-Bi layers. Consequently, the Ni-Bi /meso-Ir heterostructures show superior and stable electrochemical performance toward both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline electrolyte.

SELECTION OF CITATIONS
SEARCH DETAIL
...