Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Food Chem ; 169: 411-6, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25236245

ABSTRACT

This study investigated the inhibitory effects of aqueous extracts from Miracle Fruit leaves (AML) on mutation and oxidative damage. The results showed that AML in the range of 1-5mg/plate inhibited the mutagenicity of 2-aminoanthracene (2-AA), an indirect mutagen, and 4-nitroquinoline-N-oxide (4-NQO), a direct mutagen toward Salmonella typhimurium TA 98 and TA 100. On the other hand, AML in the range of 0.05-0.2mg/ml showed radical scavenging, reducing activities, liposome protection as well as decreased tert-butyl hydroperoxide (t-BHP) induced oxidative cytotoxicity in HepG2 cells. High performance liquid chromatography (HPLC) analysis suggested that the active phenolic constituents in AML are p-hydroxybenzoic acid, vanillic acid, syringic acid, trans-p-coumaric acid and veratric acid. These active phenolic components may contribute to the biological protection effects of AML in different models. The data suggest that AML exhibiting biological activities can be applied to antimutation as well as anti-oxidative damage.


Subject(s)
Antimutagenic Agents/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology , Synsepalum , Chromatography, High Pressure Liquid , Free Radical Scavengers/pharmacology , Glutathione/metabolism , Humans , Plant Leaves , Salmonella typhimurium/drug effects , Synsepalum/chemistry
2.
Nutrition ; 28(1): 59-66, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21872434

ABSTRACT

OBJECTIVE: Conjugated linoleic acid (CLA) decreases adipose mass and increases vitamin E levels in the liver and adipose tissue in mice. The aim of the present study was to examine the mechanism by which CLA alters vitamin E levels in tissues and antioxidant activity in mice. METHODS: C57BL/6J mice were divided into three groups and fed 5% lipid as soybean oil alone (control group), 4% soybean oil supplemented with 1% CLA (CLA group), or 5% lipid with a vitamin E supplement (VE group) for 4 wk. RESULTS: The CLA and VE diets resulted in a significant increase in the α-tocopherol concentration in all tissues examined, i.e., the liver, kidney, testis, spleen, heart, lung, and adipose tissue (P < 0.05). Levels of thiobarbituric acid-reactive substances in the kidney, testis, heart, lung, and adipose tissue were lower in the CLA and VE groups than in the control group (P < 0.05). CLA did not alter the absorption rate of vitamin E or α-carboxyethyl hydroxychromans levels in the liver and plasma. The CLA diet induced a significant increase in α-tocopherol transfer protein and mRNA levels in the liver. CLA resulted in a decrease in catalase and glutathione peroxidase activities and peroxisome proliferator α mRNA levels but had no effect on levels of mRNAs for other nuclear transcription factors in the liver. CONCLUSION: The increase in vitamin E status in CLA-fed mice is not due to altered absorption and metabolism of vitamin E but might be related to the induction of α-tocopherol transfer protein expression in the liver. The regulation of the activities of catalase and glutathione peroxidase by CLA is not mediated by vitamin E accumulation in the liver.


Subject(s)
Antioxidants/therapeutic use , Dietary Supplements , Gene Expression Regulation , Hypolipidemic Agents/therapeutic use , Linoleic Acids, Conjugated/therapeutic use , Liver/metabolism , alpha-Tocopherol/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromans/blood , Chromans/metabolism , Intestinal Absorption , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Oxidoreductases/genetics , Oxidoreductases/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , RNA, Messenger/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Triglycerides/blood , alpha-Tocopherol/blood
3.
J Clin Biochem Nutr ; 45(1): 20-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19590703

ABSTRACT

An oxidized frying oil (OFO) diet has been reported to induce an increase in lipid peroxidation and a reduction in vitamin E status in animal tissues. This study was performed to investigate how vitamin E metabolism is influenced by OFO. Male Wistar rats were divided into three groups, a control group (CO) and two OFO-fed groups (OF and OFE). The diet of the OFE group was supplemented with an extra 50 mg/kg of alpha-tocopherol acetate and thus contained twice as much vitamin E as that of the OF group. After six weeks on these diets, liver alpha-tocopherol levels in the OF group were the significantly lowest among the three groups. Excretion of the alpha-tocopherol metabolite, alpha-carboxyethyl hydroxychroman (alpha-CEHC) in the urine was significantly lower in the OF group than in the other two groups. There were no significant differences in protein levels of alpha-tocopherol transfer protein (alpha-TTP) and multidrug resistance protein among the three groups. Protein levels of cytochrome P450 monooxygenase (CYP) 3A, CYP4A, and catalase were markedly increased in both groups on the OFO diet. This suggests that an OFO diet may interfere with medicine metabolism and needs further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...