Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; : 118419, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838924

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Heart failure with preserved ejection fraction (HFpEF) has emerged as a condition with high incidence and mortality rates in recent years. Dengzhan Shengmai capsule (DZSMC) is a Chinese patent medicine based on the classic recipe "Shengmai powder". The relevant Chinese medicine ratio of Erigeron breviscapus (Vaniot) Hand.-Mazz., Panax ginseng C.A.Mey., Schisandra chinensis (Turcz.) Baill., and Ophiopogon japonicus (Thunb.) Ker Gawl. is 30 : 6 : 6 : 11 . Traditional Chinese medicine (TCM) is being increasingly explored as a safe and effective treatment modality for HFpEF. Clinical studies have shown that DZSMCs can effectively treat heart failure, however, the mechanism of action of DZSMCs in the treatment of HFpEF are still not clear. AIM OF THE STUDY: To investigate the efficacy and underlying mechanisms of Dengzhan Shengmai capsule (DZSMC), in the treatment of HFpEF by focusing on its ability to treat microvascular inflammation. MATERIALS AND METHODS: First, the efficacy of DZSMCs against HFpEF was predicted by network pharmacology. After 3 days of adaptive feeding in SPF-grade polypropylene cages, the mice in the Model group, DZSMC group, and Captopli group underwent single kidney resection, and micropumps were implanted in their backs for continuous infusion of aldosterone at a rate of 0.3 µg/h for 4 weeks. Moreover, the mice were given DZSMCs or Captopli via oral gavage for four weeks. Overall, cardiac function was evaluated in mice, and cardiac ultrasound and blood biochemical indices were evaluated in HFpEF mice. RESULTS: DZSMCs can ameliorate myocardial hypertrophy and cardiomyocyte damage caused by excessive myocardial stress, ultimately mitigating long-term cardiac impairment; it aids in the restoration of myocardial fibre proliferation and enhances mitochondrial morphology and function. In a murine model of ventricular hypertrophy and left ventricular dysfunction, which are indicative of cardiac insufficiency, the administration of DZSMCs resulted in notable improvements. Echocardiographic and overall assessments of cardiac function revealed a reduction in cardiac dysfunction and ventricular hypertrophy post-DZSMC intervention. Moreover, intervention with DZSMCs led to a reduction in the serum levels of several markers associated with chronic systemic inflammation, such as sST2, IL1RL1, CRP, and IL-6. Simultaneously, the levels of indicators of microvascular inflammation, including VCAM and E-SELECTIN, also decreased following DZSMC intervention. These findings suggest the potential multifaceted impact of DZSMCs in alleviating cardiac abnormalities, mitigating systemic inflammation, and reducing microvascular inflammatory markers, highlighting their promising therapeutic role in managing myocardial health. CONCLUSIONS: These results provide novel evidence that DZSMCs improve HFpEF by regulating microvascular inflammation.

2.
Am J Chin Med ; 52(4): 987-1011, 2024.
Article in English | MEDLINE | ID: mdl-38879747

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Conventional treatment options for TNBC often have limited efficacy and significant side effects. In recent years, traditional Chinese medicine (TCM) has shown promising results in the treatment of TNBC. TCMs include herb combinations that have synergistic effects to regulate homeostasis in the body, reduce tumor resistance, and improve patient quality of life. At present, three main TCM methods are used to treat TNBC in the clinic: strengthening the body's resistance, dispelling phlegm, and removing cancer toxins. This paper reviews the theories and mechanisms of each in TNBC treatment. The method of strengthening the body's resistance emphasizes enhancing the body's original Qi to fight against pathogenic factors; the method of dispelling phlegm seeks to eliminate phlegm stagnation and alleviate the burden on affected organs; the method of removing cancer toxins focuses on detoxification and detumescence to remove the toxic elements associated with TNBC. Although these methods treat TNBC from different etiologies, they have achieved good therapeutic effects and represent an important academic approach: That is, to cure the disease with a comprehensive view of the body and restore the balance of Yin and Yang. This knowledge lays a foundation for the future development and reasonable application of TCM in the clinic.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Female , Phytotherapy , Quality of Life
3.
Heliyon ; 9(8): e19016, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37636407

ABSTRACT

With the development of modern society and economy, modern business models have changed. Enterprise management is no longer the main function, which requires new management concepts to coordinate production and operation and create new management models. Corporate economic management is one of the main tasks of corporate governance. In order to improve corporate governance, the effective corporate economic evaluation model must be established. The advantage of fuzzy logic algorithm is that it can effectively express fuzzy data and is easy to understand, which is more transparent. The application of fuzzy logic algorithm in the research of enterprise economic management can fully reflect the advantages of fuzzy logic algorithm and improve enterprise governance. In this paper, the fuzzy logic algorithm was used to study the economic management model of enterprises. This paper first introduced the enterprise economic management model, including the definition, characteristics and shortcomings of the enterprise economic management model. The performance evaluation methods of enterprise economic management were introduced, including the clarity of performance evaluation objectives, the optimization of performance evaluation means and the feedback of performance evaluation results. Finally, the fuzzy logic algorithm was used to evaluate the performance of enterprise economic management, and the indicators and performance evaluation model of enterprise economic management were established. In the experimental part, the fuzzy logic algorithm was used to evaluate the economic management of four enterprises. The experimental results showed that Enterprise A had the highest ability to evaluate the economic management of enterprises, and the comprehensive evaluation result of economic management was above 0.9, so it had a very high enterprise economic management ability. The application of fuzzy logic to the study of enterprise economic management could directly show the advantages and disadvantages of the enterprise economic management model through quantitative analysis of the enterprise economic management model. This enabled enterprises to understand the current economic management situation and improve it based on the facts, which helped enterprises to increase their economic management ability.

4.
Sensors (Basel) ; 22(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080990

ABSTRACT

As a potential air control measure, RF-based surveillance is one of the most commonly used unmanned aerial vehicles (UAV) surveillance methods that exploits specific emitter identification (SEI) technology to identify captured RF signal from ground controllers to UAVs. Recently many SEI algorithms based on deep convolution neural network (DCNN) have emerged. However, there is a lack of the implementation of specific hardware. This paper proposes a high-accuracy and power-efficient hardware accelerator using an algorithm-hardware co-design for UAV surveillance. For the algorithm, we propose a scalable SEI neural network with SNR-aware adaptive precision computation. With SNR awareness and precision reconfiguration, it can adaptively switch between DCNN and binary DCNN to cope with low SNR and high SNR tasks, respectively. In addition, a short-time Fourier transform (STFT) reusing DCNN method is proposed to pre-extract feature of UAV signal. For hardware, we designed a SNR sensing engine, denoising engine, and specialized DCNN engine with hybrid-precision convolution and memory access, aiming at SEI acceleration. Finally, we validate the effectiveness of our design on a FPGA, using a public UAV dataset. Compared with a state-of-the-art algorithm, our method can achieve the highest accuracy of 99.3% and an F1 score of 99.3%. Compared with other hardware designs, our accelerator can achieve the highest power efficiency of 40.12 Gops/W and 96.52 Gops/W with INT16 precision and binary precision.

5.
Ecotoxicol Environ Saf ; 243: 113958, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35987081

ABSTRACT

Although the influence of microplastics (MPs) in different soil environments has been investigated, their effects on the physiochemical properties and chemical speciation of heavy metals in yellow-brown soil remains unknown. This study aimed to determine the effects of various concentrations of linear low-density polyethylene (LLDPE), polyamide (PA), polyurethane (PU), polystyrene (PS), and low-density polyethylene (LDPE) MPs on the yellow-brown soil environment and chemical speciation of the heavy metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). MPs influenced the physicochemical properties and chemical speciation of heavy metals in yellow-brown soil. The physicochemical properties of yellow-brown soil can be altered by changing the concentrations of LDPE MP. The relationship between changes in field capacity (FC) and LDPE concentrations was approximately linear. The physiochemical properties of yellow-brown soil containing added PA, PU, and LDPE MPs were substantially improved (control vs. MPs): FC, 39 % vs. 42.50 % for PU, cation exchange capacity (CEC) 45.77, 56.65, and 57.44 cmol.kg-1 for PA, PU, and LDPE respectively, and organic matter (OM) content, 40.16 vs. 51.68 g.kg-1 for PA. The LLDPE and PU MPs also simultaneously affected the chemical speciation of heavy metals in yellow-brown soil. The LLDPE MPs increased the acid-soluble (45.17-54.67 % (Cd-F1), 7.24-11.30 % (Cu-F1), 4.20-7.23 % (Pb-F1), 21.21-31.47 % (Zn-F1)) and reducible (24.02-29.41 % (Cd-F2), 25.69-34.95 % (Cu-F2), 74.29-81.07 % (Pb-F2), 28.77-34.19 % (Zn-F2)) fractions of heavy metals, which increased their bioavailability. However, PU MPs reduced the ecological risk of heavy metals in yellow-brown soil by increasing the content of the residual fraction (26.11-40.21 % (Cd-F4), 47.63-59.67 % (Cu-F4), 17.25-26.76 % (Pb-F4), 32.63-50.46 % (Zn-F4)). Changes in the properties of yellow-brown soil and the impact of MPs on heavy metals, might change the chemical speciation of heavy metals. The impact of MPs on heavy metals in yellow-brown soil requires further investigation.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium , Lead , Metals, Heavy/analysis , Microplastics , Plastics , Polyethylene , Soil/chemistry , Soil Pollutants/analysis , Zinc
6.
Exp Lung Res ; 47(8): 368-381, 2021 10.
Article in English | MEDLINE | ID: mdl-34511010

ABSTRACT

BACKGROUND: House dust mite has been well documented as a major source of allergen in asthma. Circular RNAs (circRNAs) vacuolar protein sorting 33A (circVPS33A, circ_0000455) is overexpressed in a murine asthma model. Herein, we sought to identify its critical action in Dermatophagoides pteronyssinus peptidase 1 (Der p1)-induced dysfunction of BEAS-2B cells. METHODS: The levels of circVPS33A, microRNA (miR)-192-5p, and high-mobility group box 1 (HMGB1) were assessed by quantitative real-time PCR (qRT-PCR) or western blot. Actinomycin D treatment and Ribonuclease R (RNase R) assay were used to characterize circVPS33A. Cell viability, proliferation, apoptosis, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to quantify interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and IL-6. Direct relationship between miR-192-5p and circVPS33A or HMGB1 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. RESULTS: CircVPS33A was highly expressed in asthma plasma and Der p1-treated BEAS-2B cells. Knocking down circVPS33A suppressed Der p1-induced injury in BEAS-2B cells. CircVPS33A targeted miR-192-5p. MiR-192-5p directly targeted HMGB1, and miR-192-5p-mediated repression of HMGB1 alleviated Der p1-driven cell injury. Furthermore, circVPS33A modulated HMGB1 expression through miR-192-5p. CONCLUSION: Our findings demonstrated that circVPS33A regulated house dust mite-induced injury in human bronchial epithelial cells at least partially depending on the modulation of the miR-192-5p/HMGB1 axis.


Subject(s)
Antigens, Dermatophagoides/adverse effects , Epithelial Cells/cytology , MicroRNAs , RNA, Circular , Animals , Apoptosis , Humans , MicroRNAs/genetics , Pyroglyphidae
7.
J Exp Bot ; 72(15): 5656-5672, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33999128

ABSTRACT

The phytohormones ethylene and jasmonate play important roles in the adaptation of rice plants to salt stress. However, the molecular interactions between ethylene and jasmonate on rice seminal root growth under salt stress are unknown. In this study, the effects of NaCl on the homeostasis of ethylene and jasmonate, and on rice seminal root growth were investigated. Our results indicate that NaCl treatment promotes ethylene biosynthesis by up-regulating the expression of ethylene biosynthesis genes, whereas NaCl-induced ethylene does not inhibit rice seminal root growth directly, but rather indirectly, by promoting jasmonate biosynthesis. NaCl treatment also promotes jasmonate biosynthesis through an ethylene-independent pathway. Moreover, NaCl-induced jasmonate reduces meristem cell number and cell division activity via down-regulated expression of Oryza sativa PLETHORA (OsPLT) and cell division-related genes, respectively. Additionally, NaCl-induced jasmonate inhibits seminal root cell elongation by down-regulating the expression of cell elongation-related genes. Overall, salt stress promotes jasmonate biosynthesis through ethylene-dependent and -independent pathways in rice seminal roots, and jasmonate inhibits rice seminal root growth by inhibiting root meristem cell proliferation and root cell elongation.


Subject(s)
Oryza , Cyclopentanes , Ethylenes , Gene Expression Regulation, Plant , Oryza/genetics , Oxylipins , Plant Roots
8.
Cells ; 9(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283600

ABSTRACT

Rice (Oryza sativa L.) seedlings grown under nitrogen (N) deficiency conditions show a foraging response characterized by increased root length. However, the mechanism underlying this developmental plasticity is still poorly understood. In this study, the mechanism by which N deficiency influences rice seminal root growth was investigated. The results demonstrated that compared with the control (1 mM N) treatment, N deficiency treatments strongly promoted seminal root growth. However, the N deficiency-induced growth was negated by the application of zeatin, which is a type of cytokinin (CK). Moreover, the promotion of rice seminal root growth was correlated with a decrease in CK content, which was due to the N deficiency-mediated inhibition of CK biosynthesis through the down-regulation of CK biosynthesis genes and an enhancement of CK degradation through the up-regulation of CK degradation genes. In addition, the N deficiency-induced decrease in CK content not only enhanced the root meristem cell proliferation rate by increasing the meristem cell number via the down-regulation of OsIAA3 and up-regulation of root-expressed OsPLTs, but also promoted root cell elongation by up-regulating cell elongation-related genes, including root-specific OsXTHs and OsEXPs. Taken together, our data suggest that an N deficiency-induced decrease in CK content promotes the seminal root growth of rice seedlings by promoting root meristem cell proliferation and cell elongation.


Subject(s)
Cytokinins/metabolism , Gene Expression Regulation, Plant/drug effects , Nitrogen/deficiency , Oryza/growth & development , Plant Proteins/genetics , Plant Roots/chemistry , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...