Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
1.
Crit Rev Biotechnol ; : 1-21, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973015

ABSTRACT

Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.

2.
Sci Total Environ ; : 174755, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025146

ABSTRACT

Contaminated sediments can adversely affect aquatic ecosystems, making the identification and management of pollutant sources extremely important. In this study, we proposed machine learning approaches to reveal sources and their influential distances for heavy metal contamination of downstream sediment. We employed classification models with artificial neural networks (ANN) and random forest (RF), respectively, to predict the heavy metal contamination of stream sediments using upland environmental variables as input features. A comprehensive Korean nationwide monitoring database containing 1546 datasets was used to train and test the models. These datasets encompass the concentrations of eight heavy metals (Ar, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in sediment samples collected from 160 stream sites across the nation from 2014 to 2018. Model's prediction accuracy was evaluated for input feature sets from different influential upland areas defined by different buffer radii and the watershed boundary for each site. Although both ANN and RF models were unsatisfactory in predicting heavy metal quartile classes, RF-classifiers with adaptive synthetic oversampling (ORFC) showed reasonably well-predicted classes of the sediment samples based on the Canada's Sediment Quality Guidelines (accuracy ranged from 0.67 to 0.94). The best influential distance (i.e., buffer radius) was determined for each heavy metal based on the accuracy of ORFC. The results indicated that Cd, Cu and Pb had shorter influential distances (1.5-2.0 km) than the other heavy metals with little difference in accuracy for different influential distances. Feature importance calculation revealed that upland soil contamination was the primary factor for Hg and Ni, while residential areas and roads were significant features associated with Pb and Zn contamination. This approach offers information on major contamination sources and their influential areas to be prioritized for managing contaminated stream sediments.

3.
Mol Pharm ; 21(5): 2435-2440, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38626389

ABSTRACT

Among clinically used radiopharmaceuticals, iodine-123 labeled metaiodobenzylguanidine ([123I]mIBG) serves for diagnosing neuroendocrine tumors and obtaining images of myocardial sympathetic innervation. mIBG, a structural analogue of norepinephrine (NE), a neurotransmitter acting in peripheral and central nerves, follows a pathway similar to NE, transmitting signals through the NE transporter (NET) located at synaptic terminals. It moves through the body without decomposing, enabling noninvasive image evaluation. In this study, we aimed to quantify [123I]mIBG uptake in the adrenal glands using small animal single-photon emission computed tomography/computed tomography (SPECT/CT) images post [123I]mIBG administration. We investigated the possibility of assessing the effectiveness of ß-adrenergic receptor blockers by quantifying SPECT/CT images and biodistribution results to determine the degree of [123I]mIBG uptake in the adrenal glands treated with labetalol, a known ß-adrenergic receptor blocker. Upon intravenous administration of [123I]mIBG to mice, SPECT/CT images were acquired over time to confirm the in vivo distribution pattern, revealing a clear uptake in the adrenal glands. Labetalol inhibited the uptake of [123I]mIBG in cell lines expressing NET. A decrease in [123I]mIBG uptake in the adrenal glands was observed in the labetalol-treated group compared with the normal group through SPECT/CT imaging and biodistribution studies. These results demonstrate that SPECT/CT imaging with [123I]mIBG could be applicable for evaluating the preclinical efficacy of new antihypertensive drug candidates such as labetalol, a ß-adrenergic receptor blocker.


Subject(s)
3-Iodobenzylguanidine , Adrenergic beta-Antagonists , Iodine Radioisotopes , Labetalol , Animals , Humans , Male , Mice , Adrenal Glands/diagnostic imaging , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Adrenergic beta-Antagonists/pharmacology , Adrenergic beta-Antagonists/pharmacokinetics , Cell Line, Tumor , Feasibility Studies , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Radiopharmaceuticals/pharmacokinetics , Single Photon Emission Computed Tomography Computed Tomography , Tissue Distribution
4.
Adv Healthc Mater ; 13(13): e2304371, 2024 05.
Article in English | MEDLINE | ID: mdl-38320209

ABSTRACT

Leukemia circulates in the bloodstream and induces various symptoms and complications. Occasionally, these cells accumulate in non-marrow tissues, forming a tumor-like myeloid sarcoma (MS). When the blast-stage leukemia cells invade the brain parenchyma, intracranial MS occurs, leading to a challenging prognosis owing to the limited penetration of cytostatic drugs into the brain and the development of drug resistance. The scarcity of tissue samples from MS makes understanding the phenotypic changes occurring in leukemia cells within the brain environment challenging, thereby hindering development of effective treatment strategies for intracranial MS. This study presents a novel 3D in vitro model mimicking intracranial MS, employing a hydrogel scaffold derived from the brain-decellularized extracellular matrix in which suspended leukemia cells are embedded, simulating the formation of tumor masses in the brain parenchyma. This model reveals marked phenotypic changes in leukemia cells, including altered survival, proliferation, differentiation, and cell cycle regulation. Notably, proportion of dormant leukemia stem cells increases and expression of multidrug resistance genes is upregulated, leading to imatinib resistance, mirroring the pathological features of in vivo MS tissue. Furthermore, suppression of ferroptosis is identified as an important characteristic of intracranial MS, providing valuable insights for the development of targeted therapeutic strategies.


Subject(s)
Brain , Extracellular Matrix , Sarcoma, Myeloid , Humans , Brain/pathology , Brain/metabolism , Cell Line, Tumor , Sarcoma, Myeloid/metabolism , Sarcoma, Myeloid/pathology , Extracellular Matrix/metabolism , Drug Resistance, Neoplasm , Cell Proliferation/drug effects , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Phenotype , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Cell Differentiation/drug effects , Animals , Ferroptosis/drug effects
5.
Small Methods ; 8(5): e2301428, 2024 May.
Article in English | MEDLINE | ID: mdl-38161256

ABSTRACT

Mitigating sepsis-induced severe organ dysfunction with magnetic nanoparticles has shown remarkable advances in extracorporeal blood treatment. Nevertheless, treating large septic animals remains challenging due to insufficient magnetic separation at rapid blood flow rates (>6 L h-1) and limited incubation time in an extracorporeal circuit. Herein, superparamagnetic nanoclusters (SPNCs) coated with red blood cell (RBC) membranes are developed, which promptly capture and magnetically separate a wide range of pathogens at high blood flow rates in a swine sepsis model. The SPNCs exhibited an ultranarrow size distribution of clustered iron oxide nanocrystals and exceptionally high saturation magnetization (≈ 90 emu g-1) close to that of bulk magnetite. It is also revealed that CD47 on the RBCs allows the RBC-SPNCs to remain at a consistent concentration in the blood by evading innate immunity. The uniform size distribution of the RBC-SPNCs greatly enhances their effectiveness in eradicating various pathogenic materials in extracorporeal blood. The use of RBC-SPNCs for extracorporeal treatment of swine infected with multidrug-resistant E. coli is validated and found that severe bacteremic sepsis-induced organ dysfunction is significantly mitigated after 12 h. The findings highlight the potential application of RBC-SPNCs for extracorporeal therapy of severe sepsis in large animal models and potentially humans.


Subject(s)
Magnetite Nanoparticles , Sepsis , Animals , Sepsis/therapy , Swine , Magnetite Nanoparticles/chemistry , Erythrocytes , Multiple Organ Failure/therapy , Multiple Organ Failure/prevention & control , Disease Models, Animal , Escherichia coli Infections/therapy , Magnetic Iron Oxide Nanoparticles/chemistry , Escherichia coli
6.
NAR Cancer ; 5(3): zcad050, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37746636

ABSTRACT

SET/TAF-Iß, a subunit of the inhibitor of acetyltransferases (INHAT) complex, exhibits transcriptional repression activity by inhibiting histone acetylation. We find that SET/TAF-Iß regulates mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), which is involved in polycomb-mediated transcriptional repression, in HCT116 cells. In this report, we demonstrate that SET/TAF-Iß acts as an E2 ubiquitin-conjugating enzyme for PRC1-independent H2AK119ub. Furthermore, we identify that MIB1 is the E3 ligase partner for SET/TAF-Iß using LC-MS/MS and in vitro ubiquitination assays. Transcriptome analysis reveals that SET/TAF-Iß and MIB1 regulate the expression of genes related to DNA replication and cell cycle progression in HCT116 cells, and knockdown of either protein reduces proliferation of HCT116 cells by impeding cell cycle progression. Together, our study reveals a novel PRC1-independent epigenetic regulatory mechanism for H2AK119ub by SET/TAF-Iß and MIB1 in colon cancer.

7.
Adv Sci (Weinh) ; 10(27): e2300164, 2023 09.
Article in English | MEDLINE | ID: mdl-37525340

ABSTRACT

Several stomach diseases are attributed to the dysregulation of physiological function of gastric mucosal barrier by pathogens. Gastric organoids are a promising tool to develop treatment strategies for gastric infections. However, their functional features of in vivo gastric mucosal barrier and host-microbe interactions are limited due to the lack of physiological stimuli. Herein, a human stomach micro-physiological system (hsMPS) with physiologically relevant gastric mucosal defense system is described based on the combination of organoid and MPS technology. A fluid flow enhanced epithelial-mesenchymal interaction in the hsMPS enables functional maturation of gastric epithelial cells, which allows for the recreation of mesh-like mucus layer containing high level of mucus protective peptides and well-developed epithelial junctional complexes. Furthermore, gastroprotection mechanisms against Helicobacter pylori (H. pylori) are successfully demonstrated in this system. Therefore, hsMPS represents a new in vitro tool for research where gastric mucosal defense mechanism is pivotal for developing therapeutic strategies.


Subject(s)
Mucous Membrane , Stomach , Humans , Epithelial Cells , Organoids , Defense Mechanisms
8.
Nutrients ; 15(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37111229

ABSTRACT

Inflammation is a natural defense mechanism against noxious stimuli, but chronic inflammation can lead to various chronic diseases. Neuroinflammation in the central nervous system plays an important role in the development and progression of neurodegenerative diseases. Polyphenol-rich natural products, such as Ecklonia cava (E. cava), are known to have anti-inflammatory and antioxidant properties and can provide treatment strategies for neurodegenerative diseases by controlling neuroinflammation. We investigated the effects of an E. cava extract on neuroinflammation and neurodegeneration under chronic inflammatory conditions. Mice were pretreated with E. cava extract for 19 days and then exposed to E. cava with lipopolysaccharide (LPS) for 1 week. We monitored pro-inflammatory cytokines levels in the serum, inflammation-related markers, and neurodegenerative markers using Western blotting and qRT-PCR in the mouse cerebrum and hippocampus. E. cava reduced pro-inflammatory cytokine levels in the blood and brain of mice with LPS-induced chronic inflammation. We also measured the activity of genes related to neuroinflammation and neurodegeneration. Surprisingly, E. cava decreased the activity of markers associated with inflammation (NF-kB and STAT3) and a neurodegenerative disease marker (glial fibrillary acidic protein, beta-amyloid) in the cerebrum and hippocampus of mice. We suggest that E. cava extract has the potential as a protective agent against neuroinflammation and neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Mice , Animals , Neuroinflammatory Diseases , Neuroprotective Agents/adverse effects , Lipopolysaccharides/pharmacology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Cytokines/metabolism , Microglia , Mice, Inbred C57BL
9.
Adv Mater ; 35(25): e2211149, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37052392

ABSTRACT

Autologous implantable scaffolds that induce vasculogenesis have shown great potential in tissue regeneration; however, previous attempts mainly relied on cell-laden hydrogel patches using fat tissues or platelet-rich plasma, which are insufficient for generating a uniform vasculature in a scalable manner. Here, implantable vascularized engineered thrombi (IVETs) are presented using autologous whole blood, which potentiate effective skin wound healing by constructing robust microcapillary vessel networks at the wound site. Microfluidic shear stresses enable the alignment of bundled fibrin fibers along the direction of the blood flow streamlines and the activation of platelets, both of which offer moderate stiffness of the microenvironment optimal for facilitating endothelial cell maturation and vascularization. Rodent dorsal skin wounds patched with IVET present superior wound closure rates (96.08 ± 1.58%), epidermis thickness, collagen deposition, hair follicle numbers, and neutrophil infiltration, which are permitted by enhanced microvascular circulation. Moreover, IVET treatment accelerates wound healing by recruiting M2 phenotype macrophages.


Subject(s)
Fibrin , Thrombosis , Humans , Wound Healing , Collagen , Hydrogels , Tissue Scaffolds , Skin
10.
Tissue Eng Regen Med ; 20(3): 341-353, 2023 06.
Article in English | MEDLINE | ID: mdl-37079198

ABSTRACT

BACKGOUND: Considering the important role of the Peyer's patches (PPs) in gut immune balance, understanding of the detailed mechanisms that control and regulate the antigens in PPs can facilitate the development of immune therapeutic strategies against the gut inflammatory diseases. METHODS: In this review, we summarize the unique structure and function of intestinal PPs and current technologies to establish in vitro intestinal PP system focusing on M cell within the follicle-associated epithelium and IgA+ B cell models for studying mucosal immune networks. Furthermore, multidisciplinary approaches to establish more physiologically relevant PP model were proposed. RESULTS: PPs are surrounded by follicle-associated epithelium containing microfold (M) cells, which serve as special gateways for luminal antigen transport across the gut epithelium. The transported antigens are processed by immune cells within PPs and then, antigen-specific mucosal immune response or mucosal tolerance is initiated, depending on the response of underlying mucosal immune cells. So far, there is no high fidelity (patho)physiological model of PPs; however, there have been several efforts to recapitulate the key steps of mucosal immunity in PPs such as antigen transport through M cells and mucosal IgA responses. CONCLUSION: Current in vitro PP models are not sufficient to recapitulate how mucosal immune system works in PPs. Advanced three-dimensional cell culture technologies would enable to recapitulate the function of PPs, and bridge the gap between animal models and human.


Subject(s)
Antigens , Peyer's Patches , Animals , Humans , Immunity, Mucosal , Immunoglobulin A
11.
ACS Nano ; 17(9): 8153-8166, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37068137

ABSTRACT

Blood-brain barrier (BBB) remains one of the critical challenges in developing neurological therapeutics. Short single-stranded DNA/RNA nucleotides forming a three-dimensional structure, called aptamers, have received increasing attention as BBB shuttles for efficient brain drug delivery owing to their practical advantages over Trojan horse antibodies or peptides. Aptamers are typically obtained by combinatorial chemical technology, termed Systemic Evolution of Ligands by EXponential Enrichment (SELEX), against purified targets, living cells, or animal models. However, identifying reliable BBB-penetrating aptamers that perform efficiently under human physiological conditions has been challenging because of the poor physiological relevance in the conventional SELEX process. Here, we report a human BBB shuttle aptamer (hBS) identified using a human microphysiological system (MPS)-based SELEX (MPS-SELEX) method. A two-channel MPS lined with human brain microvascular endothelial cells (BMECs) interfaced with astrocytes and pericytes, recapitulating high-level barrier function of in vivo BBB, was exploited as a screening platform. The MPS-SELEX procedure enabled robust function-based screening of the hBS candidates, which was not achievable in traditional in vitro BBB models. The identified aptamer (hBS01) through five-round of MPS-SELEX exhibited high capability to transport protein cargoes across the human BBB via clathrin-mediated endocytosis and enhanced uptake efficiency in BMECs and brain cells. The enhanced targeting specificity of hBS01 was further validated both in vitro and in vivo, confirming its powerful brain accumulation efficiency. These findings demonstrate that MPS-SELEX has potential in the discovery of aptamers with high target specificity that can be widely utilized to boost the development of drug delivery strategies.


Subject(s)
Aptamers, Nucleotide , Animals , Humans , Aptamers, Nucleotide/chemistry , Endothelial Cells/metabolism , Blood-Brain Barrier/metabolism , Microphysiological Systems , SELEX Aptamer Technique/methods , Ligands
12.
Cells ; 12(5)2023 02 27.
Article in English | MEDLINE | ID: mdl-36899888

ABSTRACT

Heart failure (HF) is an emerging epidemic with a high mortality rate. Apart from conventional treatment methods, such as surgery or use of vasodilation drugs, metabolic therapy has been suggested as a new therapeutic strategy. The heart relies on fatty acid oxidation and glucose (pyruvate) oxidation for ATP-mediated contractility; the former meets most of the energy requirement, but the latter is more efficient. Inhibition of fatty acid oxidation leads to the induction of pyruvate oxidation and provides cardioprotection to failing energy-starved hearts. One of the non-canonical types of sex hormone receptors, progesterone receptor membrane component 1 (Pgrmc1), is a non-genomic progesterone receptor associated with reproduction and fertility. Recent studies revealed that Pgrmc1 regulates glucose and fatty acid synthesis. Notably, Pgrmc1 has also been associated with diabetic cardiomyopathy, as it reduces lipid-mediated toxicity and delays cardiac injury. However, the mechanism by which Pgrmc1 influences the energy-starved failing heart remains unknown. In this study, we found that loss of Pgrmc1 inhibited glycolysis and increased fatty acid/pyruvate oxidation, which is directly associated with ATP production, in starved hearts. Loss of Pgrmc1 during starvation activated the phosphorylation of AMP-activated protein kinase, which induced cardiac ATP production. Pgrmc1 loss increased the cellular respiration of cardiomyocytes under low-glucose conditions. In isoproterenol-induced cardiac injury, Pgrmc1 knockout resulted in less fibrosis and low heart failure marker expression. In summary, our results revealed that Pgrmc1 ablation in energy-deficit conditions increases fatty acid/pyruvate oxidation to protect against cardiac damage via energy starvation. Moreover, Pgrmc1 may be a regulator of cardiac metabolism that switches the dominance of glucose-fatty acid usage according to nutritional status and nutrient availability in the heart.


Subject(s)
Heart Failure , Receptors, Progesterone , Humans , Adenosine Triphosphate/therapeutic use , Fatty Acids/metabolism , Glucose/metabolism , Heart Failure/metabolism , Membrane Proteins , Myocytes, Cardiac/metabolism , Pyruvic Acid
13.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166668, 2023 06.
Article in English | MEDLINE | ID: mdl-36822448

ABSTRACT

BACKGROUNDS AND AIMS: Type 2 diabetes mellitus (T2D) is a chronic disease characterized by insulin resistance and hyperglycemia. To investigate T2D, genetic and chemical induced hyper-obese rodent models have been experimentally developed. However, establishment of moderate-obese diabetes model will confer diverse opportunities for translational studies. In this study, we found the chemical, GLUTFOURINH® (GFI), induces post-translational degradation of glucose transporter 4 (GLUT4). We aimed to establish novel diabetic model by using GFI. METHODS AND RESULTS: Low plasma membrane GLUT4 (pmGLUT4) levels by GFI resulted in reduction of intracellular glucose uptake and TG, and increase of intracellular FFA in A204 cells. Likewise, GFI treatment decreased intracellular TG and increased intracellular FFA levels in Hep3B and 3T3-L1 cells. Mice were administered with GFI (16 mg/kg) for short-term (3-day) and long-term (28- and 31-day) to compared with vehicle injection, HFD model, and T2D model, respectively. Short-term and long-term GFI treatments induced hyperglycemia and hyperinsulinemia with low pmGLUT4 levels. Compared to HFD model, long-term GFI with HFD reduced adipose weight and intracellular TG accumulation, but increased plasma FFA. GFI treatment resulted in insulin resistance by showing low QUICKI and high HOMA-IR values, and low insulin response during insulin tolerance test. Additionally, low pmGLUT4 by GFI heightened hyperglycemia, hyperinsulinemia, and insulin resistance compared to T2D model. CONCLUSIONS: In summary, we report GLUT4 degradation by novel chemical (GFI) induces moderate-obese diabetes representing hyperglycemia, insulin resistance and low intracellular lipid accumulation. The GLUT4 degradation by GFI has translational value for studying diseases related to moderate-obese diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Hyperinsulinism , Insulin Resistance , Humans , Mice , Animals , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/metabolism , Insulin , Hyperglycemia/metabolism , Obesity , Lipids
14.
Materials (Basel) ; 15(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36431694

ABSTRACT

The copper molten marks at a fire site provide important clues for determining the causes of fire. Four factors have been presented to quantitatively discriminate copper molten marks, namely the fraction of (001) component perpendicular to the demarcation line, the grain aspect ratio, the fraction of Σ3 boundaries, and the fraction of maximum grain size. However, only laboratory-level results of these parameters have been presented, and their applicability in actual fires is yet to be verified. In this study, a fire reproduction experimental system was configured to generate molten marks similar to those in actual fire sites. The molten marks were measured by electron backscatter diffraction and applied to the four discriminant factors. The results obtained similar characteristics to those of the laboratory unit, confirming the applicability of the four discriminant factors. Discriminant equations and processes that can distinguish the primary and secondary arc beads were derived using the molten marks generated in the laboratory and reproduction experiments. Furthermore, a probabilistic discrimination method and classification model developed by machine learning were proposed. Therefore, the use of the discriminants in actual fires can improve the reliability of the statistics and prevent the recurrence of similar fires.

15.
Small ; 18(40): e2203746, 2022 10.
Article in English | MEDLINE | ID: mdl-36070419

ABSTRACT

Bloodstream infection caused by antimicrobial resistance pathogens is a global concern because it is difficult to treat with conventional therapy. Here, scavenger magnetic nanoparticles enveloped by nanovesicles derived from blood cells (MNVs) are reported, which magnetically eradicate an extreme range of pathogens in an extracorporeal circuit. It is quantitatively revealed that glycophorin A and complement receptor (CR) 1 on red blood cell (RBC)-MNVs predominantly capture human fecal bacteria, carbapenem-resistant (CR) Escherichia  coli, and extended-spectrum beta-lactamases-positive (ESBL-positive) E. coli, vancomycin-intermediate Staphylococcus aureus (VISA), endotoxins, and proinflammatory cytokines in human blood. Additionally, CR3 and CR1 on white blood cell-MNVs mainly contribute to depleting the virus envelope proteins of Zika, SARS-CoV-2, and their variants in human blood. Supplementing opsonins into the blood significantly augments the pathogen removal efficiency due to its combinatorial interactions between pathogens and CR1 and CR3 on MNVs. The extracorporeal blood cleansing enables full recovery of lethally infected rodent animals within 7 days by treating them twice in series. It is also validated that parameters reflecting immune homeostasis, such as blood cell counts, cytokine levels, and transcriptomics changes, are restored in blood of the fatally infected rats after treatment.


Subject(s)
Bacteremia , COVID-19 Drug Treatment , Escherichia coli Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , Carbapenems/metabolism , Cytokines/metabolism , Endotoxins/metabolism , Escherichia coli/metabolism , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Glycophorins/metabolism , Homeostasis , Humans , Microbial Sensitivity Tests , Opsonin Proteins/metabolism , Rats , Receptors, Complement/metabolism , Rodentia/metabolism , SARS-CoV-2 , Viral Envelope Proteins/metabolism , beta-Lactamases/metabolism
16.
Environ Pollut ; 312: 120086, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36064062

ABSTRACT

Ecological risk assessment of contaminated sediment has become a fundamental component of water quality management programs, supporting decision-making for management actions or prompting additional investigations. In this study, we proposed a machine learning (ML)-based approach to assess the ecological risk of contaminated sediment as an alternative to existing index-based methods and costly toxicity testing. The performance of three widely used index-based methods (the pollution load index, potential ecological risk index, and mean probable effect concentration) and three ML algorithms (random forest, support vector machine, and extreme gradient boosting [XGB]) were compared in their prediction of sediment toxicity using 327 nationwide data sets from Korea consisting of 14 sediment quality parameters and sediment toxicity testing data. We also compared the performances of classifiers and regressors in predicting the toxicity for each of RF, SVM, and XGB algorithms. For all algorithms, the classifiers poorly classified toxic and non-toxic samples due to limited information on the sediment composition and the small training dataset. The regressors with a given classification threshold provided better classification, with the XGB regressor outperforming the other models in the classification. A permutation feature importance analysis revealed that Cr, Cu, Pb, and Zn were major contributors to toxicity prediction. The ML-based approach has the potential to be even more useful in the future with the expected increase in available sediment data.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , China , Environmental Monitoring/methods , Geologic Sediments/analysis , Lead/analysis , Machine Learning , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
17.
J Mater Chem B ; 10(45): 9389-9399, 2022 11 23.
Article in English | MEDLINE | ID: mdl-35929536

ABSTRACT

A quintinite nanoplate (64Cu-QT-NP) isomorphically substituted with 64Cu, as the positron emission tomography (PET) imaging material, was prepared via two-step processes. A 64Cu labeling efficiency of 99% was realized, for the first time, by immobilizing the 64Cu radioisotope directly in the octahedral site of the 2-dimensional (2D) quintinite lattice. Furthermore, the 64Cu labeling stability of 64Cu-QT-NPs was also achieved to be more than ∼99% in various solutions such as saline, phosphate-buffered saline (PBS), and other biological media (mouse and human serums). In an in vivo xenograft mouse model, the passive targeting behavior of 64Cu-QT-NPs into tumor tissue based on the enhanced permeability and retention (EPR) effect was also demonstrated by parenteral administration, and successfully visualized using a PET scanner. For enhancing the tumor tissue selectivity, bovine serum albumin (BSA) was coated on 64Cu-QT-NPs to form 64Cu-QT-NPs/BSA, resulting in better colloidal stability and longer blood circulation time, which was eventually evidenced by the 2-fold higher tumor uptake rate when intravenousely injected in an animal model. It is, therefore, concluded that the present 64Cu-QT-NPs/BSA with tumor tissue selectivity could be an advanced nano-device for radio-imaging and diagnosis as well.


Subject(s)
Neoplasms , Positron-Emission Tomography , Animals , Humans , Mice , Positron-Emission Tomography/methods , Serum Albumin, Bovine , Neoplasms/diagnostic imaging
18.
J Environ Manage ; 320: 115806, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35926387

ABSTRACT

Wastewater-based epidemiology (WBE) is drawing increasing attention as a promising tool for an early warning of emerging infectious diseases such as COVID-19. This study demonstrated the utility of a spatial bisection method (SBM) and a global optimization algorithm (i.e., genetic algorithm, GA), to support better designing and operating a WBE program for disease surveillance and source identification. The performances of SBM and GA were compared in determining the optimal locations of sewer monitoring manholes to minimize the difference among the effective spatial monitoring scales of the selected manholes. While GA was more flexible in determining the spatial resolution of the monitoring areas, SBM allows stepwise selection of optimal sampling manholes with equiareal subcatchments and lowers computational cost. Upon detecting disease outbreaks at a regular sewer monitoring site, additional manholes within the catchment can be selected and monitored to identify source areas with a required spatial resolution. SBM offered an efficient method for rapidly searching for the optimal locations of additional sampling manholes to identify the source areas. This study provides strategic and technical elements of WBE including sampling site selection with required spatial resolution and a source identification method.


Subject(s)
COVID-19 , Wastewater , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Wastewater/analysis , Wastewater-Based Epidemiological Monitoring
19.
Pharmaceutics ; 14(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35890234

ABSTRACT

Immuno-positron emission tomography (PET) has great potential to evaluate the target expression level and therapeutic response for targeted cancer therapy. Immuno-PET imaging with pertuzumab, due to specific recognition in different binding sites of HER2, could be useful for the determination of the therapeutic efficacy of HER2-targeted therapy, trastuzumab, and heat shock protein 90 (HSP90) inhibitor, in HER2-expressing breast cancer. The aim of this study is to evaluate the feasibility of monitoring therapeutic response with 89Zr-DFO-pertuzumab for the treatment of HER2-targeted therapeutics, trastuzumab, or the HSP90 inhibitor 17-DMAG, in trastuzumab-resistant JIMT-1 breast cancer models. We prepared an immuno-PET imaging agent using desferoxamine (DFO)-pertuzumab labeled with 89Zr and performed the biodistribution and PET imaging in breast cancer xenograft models for monitoring therapeutic response to HER2-targeted therapy. 89Zr-DFO-pertuzumab was successfully prepared and showed specific binding to HER2 in vitro and clearly visualized HER2 expressing JIMT-1 tumors. 89Zr-DFO-pertuzumab had prominent tumor uptake in HER2 expressing JIMT-1 tumors. JIMT-1 tumors showed trastuzumab-resistant and HSP90 inhibitor sensitive characterization. In immuno-PET imaging, isotype antibody-treated JIMT-1 tumors had similar uptake in trastuzumab-treated JIMT-1 tumors, but 17-DMAG-treated JIMT-1 tumors showed greatly reduced uptake compared to vehicle-treated tumors. Additionally, HER2 downregulation evaluated by immuno-PET imaging was verified by western blot analysis and immunofluorescence staining which resulted in a significant reduction in the tumor's HER2 level in 17-DMAG-treated JIMT-1 tumors. 89Zr-DFO-pertuzumab immuno-PET may be clinically translated to select pertinent patients for HER2-targeted therapy and to monitor the therapeutic response in HER2-positive cancer patients under various HER2-targeted therapeutics treatments.

20.
Materials (Basel) ; 15(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35806659

ABSTRACT

The microstructure of molten marks changes according to ambient temperatures, when a short circuit occurs. Investigation of microstructural changes is important for understanding the properties of copper and examining the cause of a fire. In this study, the boundary characteristics and grain-size distribution of molten marks-primary-arc beads (PABs), which short-circuited at room temperature (25 °C), and secondary-arc beads (SABs), which short-circuited at high temperatures (600 °C, 900 °C)-were compared using electron backscatter diffraction. The distribution of Σ3 boundaries was compared, and it was found that SABs have a higher fraction of Σ3 boundaries than PABs. Moreover, it was confirmed that the ratio of maximum grain size (area) to the total area of the molten mark in SABs is larger than that in PABs. Thus, reliable discriminant factors were suggested, such as the fraction of Σ3 boundaries and normalized maximum grain size, which can distinguish PABs and SABs. The four discriminant factors, such as the (001)//LD, GAR, fraction of Σ3 boundaries, and fraction of maximum grain size to the total molten-mark area, were verified using the machine learning of t-SNE and Pearson correlation analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...