Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 348: 126809, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35131462

ABSTRACT

The current work focuses on studying the aqueous phase reforming (APR) of pine and birch hydrolysate obtained from waste wood by using organic acids available from biorefineries. Processing of representative synthetic mixtures was utilized in the work in order to support data interpretation related to the influence of different chemical compound and processing parameters on the APR of the actual hydrolysates. It was shown, that hydrogenation of the hydrolysates prior to APR was not feasible in the presence of formic acid, which ruled out one potential processing route. However, it was successfully demonstrated that birch and pine hydrolysates could be directly processed obtaining close to full conversion. The best results were obtained with tailored bimetallic Pd-Pt/sibunit catalyst in a trickle bed reactor system in the temperature range 175 °C-225 °C.


Subject(s)
Betula , Water , Catalysis , Polysaccharides , Water/chemistry
2.
Bioresour Technol ; 227: 112-124, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28013127

ABSTRACT

In the enzymatic hydrolysis of cellulose, several phenomena have been proposed to cause a decrease in the reaction rate with increasing conversion. The importance of each phenomenon is difficult to distinguish from batch hydrolysis data. Thus, kinetic models for the enzymatic hydrolysis of cellulose often suffer from poor parameter identifiability. This work presents a model that is applicable to fed-batch hydrolysis by discretizing the substrate based on the feeding time. Different scenarios are tested to explain the observed decrease in reaction rate with increasing conversion, and comprehensive assessment of the parameter sensitivities is carried out. The proposed model performed well in the broad range of experimental conditions used in this study and when compared to literature data. Furthermore, the use of data from fed-batch experiments and discretization of the model substrate to populations was found to be very informative when assessing the importance of the rate-decreasing phenomena in the model.


Subject(s)
Batch Cell Culture Techniques , Cellulose/metabolism , Models, Theoretical , Cellulase/metabolism , Hydrolysis , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...