Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776137

ABSTRACT

Plant-microbe interaction research has had a transformative trajectory, from individual microbial isolate studies to comprehensive analyses of plant microbiomes within the broader phytobiome framework. Acknowledging the indispensable role of plant microbiomes in shaping plant health, agriculture, and ecosystem resilience, we underscore the urgent need for sustainable crop production strategies in the face of contemporary challenges. We discuss how the synergies between advancements in 'omics technologies and artificial intelligence can help advance the profound potential of plant microbiomes. Furthermore, we propose a multifaceted approach encompassing translational considerations, transdisciplinary research initiatives, public-private partnerships, regulatory policy development, and pragmatic expectations for the practical application of plant microbiome knowledge across diverse agricultural landscapes. We advocate for strategic collaboration and intentional transdisciplinary efforts to unlock the benefits offered by plant microbiomes and address pressing global issues in food security. By emphasizing a nuanced understanding of plant microbiome complexities and fostering realistic expectations, we encourage the scientific community to navigate the transformative journey from discoveries in the laboratory to field applications. As companies specializing in agricultural microbes and microbiomes undergo shifts, we highlight the necessity of understanding how to approach sustainable agriculture with site-specific management solutions. While cautioning against over-promising, we underscore the excitement of exploring the many impacts of microbiome-plant interactions. We emphasize the importance of collaborative endeavors with societal partners to accelerate our collective capacity to harness the diverse and yet-to-be-discovered beneficial activities of plant microbiomes.

2.
Phytopathology ; 111(10): 1897-1900, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33728936

ABSTRACT

Phymatotrichopsis omnivora is a destructive plant pathogen causing root rot disease of alfalfa, cotton, pecan, grape, and many other important dicotyledonous species. A member of the family Rhizinaceae, in the class Pezizomycetes, P. omnivora is a soilborne ascomycete fungus that is difficult to maintain in culture, currently genetically intractable, and for which there are no publicly available genomic resources. We have generated draft genome sequences of four P. omnivora isolates obtained from cotton and alfalfa, growing in Texas and Oklahoma. These genome sequences will provide new insights into the biology of the fungus, including the factors responsible for its broad host range and pathogenicity.


Subject(s)
Ascomycota , Host Specificity , Ascomycota/genetics , Genomics , Plant Diseases
3.
Plant Cell Environ ; 43(4): 1084-1101, 2020 04.
Article in English | MEDLINE | ID: mdl-31930733

ABSTRACT

Necrotrophic fungi constitute the largest group of plant fungal pathogens that cause heavy crop losses worldwide. Phymatotrichopsis omnivora is a broad host, soil-borne necrotrophic fungal pathogen that infects over 2,000 dicotyledonous plants. The molecular basis of such broad host range is unknown. We conducted cell biology and transcriptomic studies in Medicago truncatula (susceptible), Brachypodium distachyon (resistant/nonhost), and Arabidopsis thaliana (partially resistant) to understand P. omnivora virulence mechanisms. We performed defence gene analysis, gene enrichments, and correlational network studies during key infection stages. We identified that P. omnivora infects the susceptible plant as a traditional necrotroph. However, it infects the partially resistant plant as a hemi-biotroph triggering salicylic acid-mediated defence pathways in the plant. Further, the infection strategy in partially resistant plants is determined by the host responses during early infection stages. Mutant analyses in A. thaliana established the role of small peptides PEP1 and PEP2 in defence against P. omnivora. The resistant/nonhost B. distachyon triggered stress responses involving sugars and aromatic acids. Bdwat1 mutant analysis identified the role of cell walls in defence. This is the first report that describes the plasticity in infection strategies of P. omnivora providing insights into broad host range.


Subject(s)
Ascomycota/physiology , Plant Diseases/microbiology , Arabidopsis/immunology , Arabidopsis/microbiology , Ascomycota/metabolism , Brachypodium/immunology , Brachypodium/microbiology , Gene Expression Profiling , Medicago truncatula/immunology , Medicago truncatula/microbiology , Microscopy, Electron, Scanning , Plant Diseases/immunology , Plant Roots/microbiology , Plant Roots/ultrastructure , Polymerase Chain Reaction , Virulence
4.
Front Plant Sci ; 10: 1345, 2019.
Article in English | MEDLINE | ID: mdl-31749817

ABSTRACT

The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.

5.
Plant Cell ; 22(4): 1388-403, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20435900

ABSTRACT

Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice.


Subject(s)
Fungal Proteins/metabolism , Magnaporthe/pathogenicity , Oryza/microbiology , Plant Diseases/microbiology , Cytoplasm/microbiology , Hyphae/pathogenicity , Microscopy, Fluorescence , Oryza/cytology , Protein Transport
6.
Plant Cell ; 19(2): 706-24, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17322409

ABSTRACT

Rice blast disease is caused by the hemibiotrophic fungus Magnaporthe oryzae, which invades living plant cells using intracellular invasive hyphae (IH) that grow from one cell to the next. The cellular and molecular processes by which this occurs are not understood. We applied live-cell imaging to characterize the spatial and temporal development of IH and plant responses inside successively invaded rice (Oryza sativa) cells. Loading experiments with the endocytotic tracker FM4-64 showed dynamic plant membranes around IH. IH were sealed in a plant membrane, termed the extra-invasive hyphal membrane (EIHM), which showed multiple connections to peripheral rice cell membranes. The IH switched between pseudohyphal and filamentous growth. Successive cell invasions were biotrophic, although each invaded cell appeared to have lost viability when the fungus moved into adjacent cells. EIHM formed distinct membrane caps at the tips of IH that initially grew in neighboring cells. Time-lapse imaging showed IH scanning plant cell walls before crossing, and transmission electron microscopy showed IH preferentially contacting or crossing cell walls at pit fields. This and additional evidence strongly suggest that IH co-opt plasmodesmata for cell-to-cell movement. Analysis of biotrophic blast invasion will significantly contribute to our understanding of normal plant processes and allow the characterization of secreted fungal effectors that affect these processes.


Subject(s)
Cell Membrane/metabolism , Magnaporthe/pathogenicity , Oryza , Plasmodesmata/metabolism , Cell Communication , Cell Membrane/ultrastructure , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Fluorescent Dyes/metabolism , Hyphae/metabolism , Hyphae/ultrastructure , Magnaporthe/cytology , Magnaporthe/metabolism , Oryza/cytology , Oryza/metabolism , Oryza/microbiology , Osmotic Pressure , Plant Leaves/cytology , Plant Leaves/microbiology , Pyridinium Compounds/metabolism , Quaternary Ammonium Compounds/metabolism
7.
Phytopathology ; 96(4): 346-55, 2006 Apr.
Article in English | MEDLINE | ID: mdl-18943416

ABSTRACT

ABSTRACT Molecular analyses of early disease events require infected plant tissue in which the pathogen is present in high quantities and interacts with the plant in a way found in the field. In this study, a quantitative polymerase chain reaction (Q-PCR) assay was developed to determine an "infection ratio" of fungal to plant cells in infected tissues. This assay was used to evaluate four inoculation methods (spray, mist, dip, and sheath) as well as use of whole plants or excised parts. Fluorescence stereomicroscopy was used to follow individual lesions developing from appressoria to macroscopic symptoms. Disease progression and outcomes were documented from 24 to 96 h postinoculation (hpi), as well as effectiveness of Pi-ta-mediated resistance. Even at 96 hpi, fungus proliferated well ahead of visible plant damage, especially in veins. Developing lesions sometimes were surrounded by greener areas in detached leaves. Spray inoculation was not sufficient for detecting fungal gene expression in planta before 96 h. Alternatively, a leaf sheath assay produced infected tissues containing 10 to 30% fungal DNA by 34 h. Used together, Q-PCR quantification and fluorescence stereomicroscopy will facilitate studies of early plant invasion because infection density and fungal growth stages are directly observed, not assumed from incubation time.

SELECTION OF CITATIONS
SEARCH DETAIL
...