Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37023882

ABSTRACT

Anxiety is one of the most common psychiatric symptoms worldwide. Studies show that there is an increase of >25 % in the prevalence of anxiety with the onset of the COVID-19 pandemic process. Due to the various side effects of drugs used in the treatment of anxiety, interest in natural therapeutic alternatives has increased. Agarwood is a plant used as a natural therapeutic due to its sedative effect as well as many effects such as antioxidant and antibacterial. Although there are many studies with agarwood, comprehensive behavioral studies, including the next generation, are limited. In present study, zebrafish fed with diets containing 10-100 ppm water extract of Agarwood (AWE) for 3 and 8 weeks were exposed to predator stress using Oscar fish in order to test the potential anxiolytic effect of AWE. At the end of the period, zebrafish exposed to predator stress were subjected to anxiety and circadian tests. Histopathological evaluation and immunofluorescent analyzes of BDNF and 5HT4-R proteins were performed in the brains of zebrafish. The effects on the next generation were examined by taking offspring from zebrafish. According to the results, it was observed that AWE had a healing effect on anxiety-like behaviors and on the disrupted circadian rhythm triggered by the predatory stress it applied, especially in the 8 weeks 100 ppm group. Interestingly, it was also found to be effective in offspring of zebrafish fed diets with AWE.


Subject(s)
Anti-Anxiety Agents , COVID-19 , Animals , Humans , Anti-Anxiety Agents/pharmacology , Zebrafish , Pandemics , Anxiety/drug therapy , Anxiety/metabolism
2.
Article in English | MEDLINE | ID: mdl-36822298

ABSTRACT

In our study, the antioxidant capacity of carob pods water extract (CPWE) against deltamethrin (DM)-induced oxidative stress, a widely used pesticide around the world, was investigated in vitro and in vivo in a zebrafish model. The in vitro antioxidant capacity of the obtained extract was evaluated with different methods using trolox, BHA and BHT standard antioxidants. For in vivo experiments, 4hpf zebrafish embryos were exposed to 10 ppb and 25 ppb DM for 120 h and the larvae were treated with 1-10 and 100 ppm CPWE for 4 h at 72th hours. According to the results obtained, it has been determined that the exposure of zebrafish to DM during the developmental period causes important body malformations, decrease in survival rate, reduction in eye size, shortening in body length and decrease in locomotor activity in the dark period. In addition, according to the results of whole-mount staining, it was determined that DM caused a significant increase in the amount of free oxygen radicals and apoptotic cells. It was also confirmed by metabolome analysis that CPWE application for 4 h reduced DM-induced toxicity and oxidative stress. As a result, it can be said that CPWE has an important antioxidant capacity in eliminating DM-induced oxidative stress.


Subject(s)
Antioxidants , Fabaceae , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Zebrafish/metabolism , Larva , Oxidative Stress , Fabaceae/metabolism
3.
Sci Total Environ ; 858(Pt 3): 160086, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36356745

ABSTRACT

Global warming further increases the toxic threat of environmental pollutants on organisms. In order to reveal the dimensions of this threat more clearly, it is of great importance that the studies be carried out with temperature differences as close as possible to the temperature values that will represent the global climate projection. In our study, how the toxicity of glyphosate, which is widely used around the world, on zebrafish changes with temperature increases of 0.5° was investigated on behavioral and molecular basis. For this purpose, adult zebrafish were exposed to glyphosate at concentrations of 1 ppm and 5 ppm for 96 h in four environments with a temperature difference of 0.5° (28.5; 29.0; 29.5; 30.0 °C). At the end of the exposure, half of the zebrafish were sampled and remaining half were left for a 10-day recovery process. At the end of the trials, zebrafish were subjected to circadian rhythm and anxiety tests. In addition, histopathological, immunohistochemical and metabolome analyses were performed on brain tissues. As a result, it has been detected that anxiety and circadian rhythm were disrupted in parallel with the increased temperature and glyphosate concentration, and increased histopathological findings and 5-HT4R and GNAT2 immunopositivity in the brain. As a result of metabolome analysis, more than thirty annotated metabolites have been determined due to the synergistic effect of temperature increase and glyphosate exposure. As a conclusion, it was concluded that even a temperature increase of 0.5° caused an increasing effect of glyphosate toxicity in the zebrafish model.


Subject(s)
Metabolomics , Zebrafish , Animals
4.
Environ Toxicol Pharmacol ; 97: 104044, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36566951

ABSTRACT

Fluoride exposure through drinking water, foods, cosmetics, and drugs causes genotoxic effects, oxidative damage, and impaired cognitive abilities. In our study, the effects of fluoride on anxiety caused by the circadian clock and circadian clock changes in a zebrafish model were investigated at the molecular level on parents and the next generations. For this purpose, adult zebrafish were exposed to 1.5 ppm, 5 ppm, and 100 ppm fluoride for 6 weeks. At the end of exposure, anxiety-like behaviors and sleep/wake behaviors of the parent fish were evaluated with the circadian rhythm test and the novel tank test. In addition, antioxidant enzyme activities and melatonin levels in brain tissues were measured. In addition, morphological, physiological, molecular and behavioral analyzes of offspring taken from zebrafish exposed to fluoride were performed. In addition, histopathological analyzes were made in the brain tissues of both adult zebrafish and offspring, and the damage caused by fluoride was determined. The levels of BMAL1, CLOCK, PER2, GNAT2, BDNF and CRH proteins were measured by immunohistochemical analysis and significant changes in their levels were determined in the F- treated groups. The data obtained as a result of behavioral and molecular analyzes showed that parental fluoride exposure disrupts the circadian rhythm, causes anxiety-like behaviors, and decreases the levels of brain antioxidant enzymes and melatonin in parents. In addition, delay in hatching, increase in death and body malformations, and decrease in blood flow velocity, and locomotor activity was observed in parallel with dose increase in offspring. On the other hand, an increase in offspring apoptosis rate, ROS level, and lipid accumulation was detected. As a result, negative effects of fluoride exposure on both parents and next generations have been identified.


Subject(s)
Melatonin , Zebrafish , Animals , Zebrafish/metabolism , Fluorides/toxicity , Antioxidants/metabolism , Zebrafish Proteins/metabolism
5.
Sci Total Environ ; 856(Pt 1): 158903, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36419276

ABSTRACT

The increase in temperature due to global warming greatly affects the toxicity produced by pesticides in the aquatic ecosystem. Studies investigating the effects of such environmental stress factors on next generations are important in terms of the sustainability of ecosystems. In this study, the effects of parental synergistic exposure to glyphosate and temperature increase on the next generation were investigated in a zebrafish model. For this purpose, adult zebrafish were exposed to 1 ppm and 5 ppm glyphosate for 96 h at four different temperatures (28.5, 29.0, 29.5, 30.0 °C). At the end of this period, some of the fish were subjected to the recovery process for 10 days. At the end of both treatments, a new generation was taken from the fish and morphological, physiological, molecular and behavioral analysis were performed on the offspring. According to the results, in parallel with the 0.5-degree temperature increase applied to the parents with glyphosate exposure, lower survival rate, delay in hatching, increased body malformations and lower blood flow and heart rate were detected in the offspring. In addition, according to the results of whole mouth larva staining, increased apoptosis, free oxygen radical formation and lipid accumulation were detected in the offspring. Moreover, it has been observed that the temperature increases to which the parents are exposed affects the light signal transmission and serotonin pathways in the offspring, resulting in more dark/light locomotor activity and increased thigmotaxis.


Subject(s)
Global Warming , Zebrafish , Animals , Zebrafish/physiology , Ecosystem , Glycine/toxicity , Glyphosate
6.
Sci Total Environ ; 838(Pt 3): 156391, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35654199

ABSTRACT

With the ever-increasing plastic pollution, the nano-sized plastic particles that are constantly released from the main materials have a greater potential threat. Studies continue on how to eliminate plastic waste, which has become a global problem, from nature. We are aware that complete elimination is not easy at all, but it is not known clearly that even if it is successful, its effects on organisms will also disappear completely. In this study, zebrafish injected with 20 nm-sized polystyrene particles (PS) only during the embryonic period were grown in an environment without plastic exposure. The effects of PS on their offspring embryo/larvae were examined at morphological, molecular and metabolomic levels. Results showed that parental PNP exposure caused significant malformations, decreased survival rate, increased heart rate and blood flow rate, as well as decreased eye size, height and locomotor activity, which were attributed to growth retardation in the offspring. According to the results of whole-mount immunofluorescence larval staining, cell death and reactive oxygen species were significantly increased, while lipid accumulation was decreased in new generation larvae from zebrafish injected with PNP. In order to elucidate the mechanisms underlying these morphological, physiological and molecular damages, the metabolome analyses were performed by evaluating the Q-TOF MS/MS spectra with chemometric analyses in the offspring larvae. According to the metabolomics results, 28 annotated metabolomes suggested by the OPLS-DA analysis that may vary significantly through a variable in projection scores were detected. In addition, it was detected that the significantly increased histopathological findings and immunopositivity of JNK, H2A.X, PI3 and NOP10 in new generation larvae. In conclusion, it has been shown that exposure to PS, even only during the embryonic period, may affect many cancer-related biological processes in the next generation.


Subject(s)
Biological Phenomena , Nanoparticles , Neoplasms , Water Pollutants, Chemical , Animals , Larva , Nanoparticles/metabolism , Plastics/metabolism , Polystyrenes/metabolism , Polystyrenes/toxicity , Tandem Mass Spectrometry , Water Pollutants, Chemical/metabolism , Zebrafish/metabolism
7.
Arch Toxicol ; 96(4): 1089-1099, 2022 04.
Article in English | MEDLINE | ID: mdl-35146542

ABSTRACT

Since the middle of the twentieth century, the use of dyes has become more common in every food group as well as in the pharmaceutical, textile and cosmetic industries. Azo dyes, including carmoisine, are the most important of the dye classes with the widest color range. In this study, the effects of carmoisine exposure on the embryonic development of zebrafish at a wide dose scale, including recommended and overexposure doses (from 4 to 2000 ppm), were investigated in detail. For this purpose, many morphological and physiological parameters were examined in zebrafish exposed to carmoisine at determined doses for 96 h, and the mechanisms of action of the changes in these parameters were tried to be clarified with the metabolite levels determined. The no observed effect concentration (NOEC) and median lethal concentration (LC50) were recorded at 5 ppm and 1230.53 ppm dose at 96 hpf, respectively. As a result, it was determined that the applied carmoisine caused serious malformations, reduction in height and eye diameter, increase in the number of free oxygen radicals, in apoptotic cells and in lipid accumulation, decrease in locomotor activity depending on the dose and at the highest dose, decrease in blood flow rate. In the metabolome analysis performed to elucidate the metabolism underlying all these changes, 45 annotated metabolites were detected.


Subject(s)
Food Coloring Agents , Zebrafish , Animals , Azo Compounds , Coloring Agents , Embryo, Nonmammalian , Food Coloring Agents/toxicity , Naphthalenesulfonates/metabolism , Naphthalenesulfonates/pharmacology , Zebrafish/metabolism
8.
Int J Biol Macromol ; 163: 2465-2473, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32987073

ABSTRACT

The toxicity of sodium carboxymethyl cellulose (CMC), which has GRAS status and has been determined as "ADI non specified", was re-evaluated with a new modelling and molecular-based data. For this purpose, CMC, a food additive, was injected to the yolk sac (food) of the zebrafish embryo by the microinjection method at the 4th hour of fertilization at different concentrations. As a result, it was found that CMC showed no toxic effects within the framework of the parameters studied. But, we determined increasing lipid accumulation in zebrafish embryos exposed to CMC in a dose-dependent manner. To elucidate the mechanism underlying this lipid accumulation, the expression levels of genes related to obesity-linked lipid metabolism were examined. Our findings show that while CMC does not cause a toxic effect in zebrafish embryos, it can lead important effects on lipid metabolism by causing changes in the expression of some genes associated with obesity.


Subject(s)
Carboxymethylcellulose Sodium/adverse effects , Food Additives/adverse effects , Lipid Metabolism/drug effects , Obesity/metabolism , Animals , Carboxymethylcellulose Sodium/chemistry , Disease Models, Animal , Embryo, Nonmammalian , Food/adverse effects , Food Additives/chemistry , Humans , Obesity/chemically induced , Sodium/chemistry , Zebrafish/genetics , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...