Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Transl Lung Cancer Res ; 13(6): 1383-1395, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38973945

ABSTRACT

Background and Objective: A significant number of individuals diagnosed with non-small cell lung cancer (NSCLC) have distant metastases, and the concept of oligometastatic NSCLC has shown promise in achieving a cure. Stereotactic body radiation therapy (SBRT) is currently considered a viable treatment option for a limited number of tumor metastases. It has also been demonstrated that third-generation tyrosine kinase inhibitors (TKIs) are effective in extending the survival of patients with epidermal growth factor receptor (EGFR)-mutated NSCLC. Hence, the combination of SBRT with third-generation TKIs holds the potential to enhance treatment efficacy in patients with oligometastatic EGFR-mutated NSCLC. This review aimed to assess the possibility of combining SBRT with TKIs as an optimum treatment option for patients with oligometastatic EGFR-mutated NSCLC. Methods: We performed a narrative review by searching the PubMed, Web of Science, Elsevier and ClinicalTrials.gov databases for articles published in the English language from January 2009 to February 2024 and by reviewing the bibliographies of key references to identify important literature related to combining SBRT with third-generation TKIs in oligometastatic EGFR-mutated NSCLC. Key Content and Findings: This review aimed to assess the viability of combining SBRT and EGFR-TKIs in oligometastatic EGFR-mutated NSCLC. Current clinical trials suggest that the combined therapies have better progression free survival (PFS) when using SBRT as either concurrent with EGFR-TKIs or consolidated with EGFR-TKIs. Furthermore, research with third-generation EGFR-TKIs and SBRT combinations has demonstrated tolerable toxicity levels without significant additional adverse effects as compared to prior therapies. However, further clinical trials are required to establish its effectiveness. Conclusions: The combined approach of SBRT and TKIs can effectively impede the progression of oligometastatic NSCLC in patients harboring EGFR mutations and, most notably, can prolong progression-free survival rates. However, the feasibility of combining SBRT with third-generation TKIs in clinical trials remains unclear.

2.
medRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38978642

ABSTRACT

Pediatric glioma recurrence can cause morbidity and mortality; however, recurrence pattern and severity are heterogeneous and challenging to predict with established clinical and genomic markers. Resultingly, almost all children undergo frequent, long-term, magnetic resonance (MR) brain surveillance regardless of individual recurrence risk. Deep learning analysis of longitudinal MR may be an effective approach for improving individualized recurrence prediction in gliomas and other cancers but has thus far been infeasible with current frameworks. Here, we propose a self-supervised, deep learning approach to longitudinal medical imaging analysis, temporal learning, that models the spatiotemporal information from a patient's current and prior brain MRs to predict future recurrence. We apply temporal learning to pediatric glioma surveillance imaging for 715 patients (3,994 scans) from four distinct clinical settings. We find that longitudinal imaging analysis with temporal learning improves recurrence prediction performance by up to 41% compared to traditional approaches, with improvements in performance in both low- and high-grade glioma. We find that recurrence prediction accuracy increases incrementally with the number of historical scans available per patient. Temporal deep learning may enable point-of-care decision-support for pediatric brain tumors and be adaptable more broadly to patients with other cancers and chronic diseases undergoing surveillance imaging.

3.
Radiol Artif Intell ; : e230254, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984985

ABSTRACT

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop, externally test, and evaluate clinical acceptability of a deep learning (DL) pediatric brain tumor segmentation model using stepwise transfer learning. Materials and Methods In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001-December 2015) from a national brain tumor consortium (n = 184; median age, 7 years (range: 1-23 years); 94 male) and a pediatric cancer center (n = 100; median age, 8 years (range: 1-19 years); 47 male) to develop and evaluate DL neural networks for pediatric low-grade glioma segmentation using a novel stepwise transfer learning approach to maximize performance in a limited data scenario. The best model was externally-tested on an independent test set and subjected to randomized, blinded evaluation by three clinicians, wherein they assessed clinical acceptability of expert- and artificial intelligence (AI)-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model used in-domain, stepwise transfer learning (median DSC: 0.88 [IQR 0.72-0.91] versus 0.812 [0.56-0.89] for baseline model; P = .049). On external testing, AI model yielded excellent accuracy using reference standards from three clinical experts (Expert-1: 0.83 [0.75-0.90]; Expert-2: 0.81 [0.70-0.89]; Expert-3: 0.81 [0.68-0.88]; mean accuracy: 0.82)). On clinical benchmarking (n = 100 scans), experts rated AI-based segmentations higher on average compared with other experts (median Likert score: median 9 [IQR 7-9]) versus 7 [IQR 7-9]) and rated more AI segmentations as clinically acceptable (80.2% versus 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases. Conclusion Stepwise transfer learning enabled expert-level, automated pediatric brain tumor auto-segmentation and volumetric measurement with a high level of clinical acceptability. ©RSNA, 2024.

4.
Biomed Phys Eng Express ; 10(4)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38861951

ABSTRACT

Objective.We aim to: (1) quantify the benefits of lung sparing using non-adaptive magnetic resonance guided stereotactic body radiotherapy (MRgSBRT) with advanced motion management for peripheral lung cancers compared to conventional x-ray guided SBRT (ConvSBRT); (2) establish a practical decision-making guidance metric to assist a clinician in selecting the appropriate treatment modality.Approach.Eleven patients with peripheral lung cancer who underwent breath-hold, gated MRgSBRT on an MR-guided linear accelerator (MR linac) were studied. Four-dimensional computed tomography (4DCT)-based retrospective planning using an internal target volume (ITV) was performed to simulate ConvSBRT, which were evaluated against the original MRgSBRT plans. Metrics analyzed included planning target volume (PTV) coverage, various lung metrics and the generalized equivalent unform dose (gEUD). A dosimetric predictor for achievable lung metrics was derived to assist future patient triage across modalities.Main results.PTV coverage was high (median V100% > 98%) and comparable for both modalities. MRgSBRT had significantly lower lung doses as measured by V20 (median 3.2% versus 4.2%), mean lung dose (median 3.3 Gy versus 3.8 Gy) and gEUD. Breath-hold, gated MRgSBRT resulted in an average reduction of 47% in PTV volume and an average increase of 19% in lung volume. Strong correlation existed between lung metrics and the ratio of PTV to lung volumes (RPTV/Lungs) for both modalities, indicating that RPTV/Lungsmay serve as a good predictor for achievable lung metrics without the need for pre-planning. A threshold value of RPTV/Lungs< 0.035 is suggested to achieve V20 < 10% using ConvSBRT. MRgSBRT should otherwise be considered if the threshold cannot be met.Significance.The benefits of lung sparing using MRgSBRT were quantified for peripheral lung tumors; RPTV/Lungswas found to be an effective predictor for achievable lung metrics across modalities. RPTV/Lungscan assist a clinician in selecting the appropriate modality without the need for labor-intensive pre-planning, which has significant practical benefit for a busy clinic.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms , Lung , Magnetic Resonance Imaging , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Radiosurgery/methods , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Retrospective Studies , Four-Dimensional Computed Tomography/methods , Male , Female , Radiotherapy, Image-Guided/methods , Breath Holding , Aged , Middle Aged , Organ Sparing Treatments/methods , Organs at Risk
5.
Commun Med (Lond) ; 4(1): 110, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851837

ABSTRACT

BACKGROUND: Radiotherapy is a core treatment modality for oropharyngeal cancer (OPC), where the primary gross tumor volume (GTVp) is manually segmented with high interobserver variability. This calls for reliable and trustworthy automated tools in clinician workflow. Therefore, accurate uncertainty quantification and its downstream utilization is critical. METHODS: Here we propose uncertainty-aware deep learning for OPC GTVp segmentation, and illustrate the utility of uncertainty in multiple applications. We examine two Bayesian deep learning (BDL) models and eight uncertainty measures, and utilize a large multi-institute dataset of 292 PET/CT scans to systematically analyze our approach. RESULTS: We show that our uncertainty-based approach accurately predicts the quality of the deep learning segmentation in 86.6% of cases, identifies low performance cases for semi-automated correction, and visualizes regions of the scans where the segmentations likely fail. CONCLUSIONS: Our BDL-based analysis provides a first-step towards more widespread implementation of uncertainty quantification in OPC GTVp segmentation.


Radiotherapy is used as a treatment for people with oropharyngeal cancer. It is important to distinguish the areas where cancer is present so the radiotherapy treatment can be targeted at the cancer. Computational methods based on artificial intelligence can automate this task but need to be able to distinguish areas where it is unclear whether cancer is present. In this study we compare these computational methods that are able to highlight areas where it is unclear whether or not cancer is present. Our approach accurately predicts how well these areas are distinguished by the models. Our results could be applied to improve the computational methods used during radiotherapy treatment. This could enable more targeted treatment to be used in the future, which could result in better outcomes for people with oropharyngeal cancer.

6.
Neuro Oncol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769022

ABSTRACT

MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumor from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.

9.
J Nucl Med ; 65(5): 803-809, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38514087

ABSTRACT

We aimed to investigate the effects of 18F-FDG PET voxel intensity normalization on radiomic features of oropharyngeal squamous cell carcinoma (OPSCC) and machine learning-generated radiomic biomarkers. Methods: We extracted 1,037 18F-FDG PET radiomic features quantifying the shape, intensity, and texture of 430 OPSCC primary tumors. The reproducibility of individual features across 3 intensity-normalized images (body-weight SUV, reference tissue activity ratio to lentiform nucleus of brain and cerebellum) and the raw PET data was assessed using an intraclass correlation coefficient (ICC). We investigated the effects of intensity normalization on the features' utility in predicting the human papillomavirus (HPV) status of OPSCCs in univariate logistic regression, receiver-operating-characteristic analysis, and extreme-gradient-boosting (XGBoost) machine-learning classifiers. Results: Of 1,037 features, a high (ICC ≥ 0.90), medium (0.90 > ICC ≥ 0.75), and low (ICC < 0.75) degree of reproducibility across normalization methods was attained in 356 (34.3%), 608 (58.6%), and 73 (7%) features, respectively. In univariate analysis, features from the PET normalized to the lentiform nucleus had the strongest association with HPV status, with 865 of 1,037 (83.4%) significant features after multiple testing corrections and a median area under the receiver-operating-characteristic curve (AUC) of 0.65 (interquartile range, 0.62-0.68). Similar tendencies were observed in XGBoost models, with the lentiform nucleus-normalized model achieving the numerically highest average AUC of 0.72 (SD, 0.07) in the cross validation within the training cohort. The model generalized well to the validation cohorts, attaining an AUC of 0.73 (95% CI, 0.60-0.85) in independent validation and 0.76 (95% CI, 0.58-0.95) in external validation. The AUCs of the XGBoost models were not significantly different. Conclusion: Only one third of the features demonstrated a high degree of reproducibility across intensity-normalization techniques, making uniform normalization a prerequisite for interindividual comparability of radiomic markers. The choice of normalization technique may affect the radiomic features' predictive value with respect to HPV. Our results show trends that normalization to the lentiform nucleus may improve model performance, although more evidence is needed to draw a firm conclusion.


Subject(s)
Fluorodeoxyglucose F18 , Machine Learning , Oropharyngeal Neoplasms , Humans , Oropharyngeal Neoplasms/diagnostic imaging , Male , Female , Middle Aged , Positron-Emission Tomography/methods , Image Processing, Computer-Assisted/methods , Aged , Carcinoma, Squamous Cell/diagnostic imaging , Biomarkers, Tumor/metabolism , Reproducibility of Results , Radiomics
10.
Radiol Artif Intell ; 6(3): e230333, 2024 May.
Article in English | MEDLINE | ID: mdl-38446044

ABSTRACT

Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, n = 214 [113 (52.8%) male; 104 (48.6%) BRAF wild type, 60 (28.0%) BRAF fusion, and 50 (23.4%) BRAF V600E]) and the Children's Brain Tumor Network (external testing, n = 112 [55 (49.1%) male; 35 (31.2%) BRAF wild type, 60 (53.6%) BRAF fusion, and 17 (15.2%) BRAF V600E]). A deep learning pipeline was developed to classify BRAF mutational status (BRAF wild type vs BRAF fusion vs BRAF V600E) via a two-stage process: (a) three-dimensional tumor segmentation and extraction of axial tumor images and (b) section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. Keywords: Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Brain Neoplasms , Glioma , Humans , Child , Male , Female , Brain Neoplasms/diagnostic imaging , Retrospective Studies , Proto-Oncogene Proteins B-raf/genetics , Glioma/diagnosis , Machine Learning
11.
Sci Rep ; 14(1): 2536, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291051

ABSTRACT

Manual segmentation of tumors and organs-at-risk (OAR) in 3D imaging for radiation-therapy planning is time-consuming and subject to variation between different observers. Artificial intelligence (AI) can assist with segmentation, but challenges exist in ensuring high-quality segmentation, especially for small, variable structures, such as the esophagus. We investigated the effect of variation in segmentation quality and style of physicians for training deep-learning models for esophagus segmentation and proposed a new metric, edge roughness, for evaluating/quantifying slice-to-slice inconsistency. This study includes a real-world cohort of 394 patients who each received radiation therapy (mainly for lung cancer). Segmentation of the esophagus was performed by 8 physicians as part of routine clinical care. We evaluated manual segmentation by comparing the length and edge roughness of segmentations among physicians to analyze inconsistencies. We trained eight multiple- and individual-physician segmentation models in total, based on U-Net architectures and residual backbones. We used the volumetric Dice coefficient to measure the performance for each model. We proposed a metric, edge roughness, to quantify the shift of segmentation among adjacent slices by calculating the curvature of edges of the 2D sagittal- and coronal-view projections. The auto-segmentation model trained on multiple physicians (MD1-7) achieved the highest mean Dice of 73.7 ± 14.8%. The individual-physician model (MD7) with the highest edge roughness (mean ± SD: 0.106 ± 0.016) demonstrated significantly lower volumetric Dice for test cases compared with other individual models (MD7: 58.5 ± 15.8%, MD6: 67.1 ± 16.8%, p < 0.001). A multiple-physician model trained after removing the MD7 data resulted in fewer outliers (e.g., Dice ≤ 40%: 4 cases for MD1-6, 7 cases for MD1-7, Ntotal = 394). While we initially detected this pattern in a single clinician, we validated the edge roughness metric across the entire dataset. The model trained with the lowest-quantile edge roughness (MDER-Q1, Ntrain = 62) achieved significantly higher Dice (Ntest = 270) than the model trained with the highest-quantile ones (MDER-Q4, Ntrain = 62) (MDER-Q1: 67.8 ± 14.8%, MDER-Q4: 62.8 ± 15.7%, p < 0.001). This study demonstrates that there is significant variation in style and quality in manual segmentations in clinical care, and that training AI auto-segmentation algorithms from real-world, clinical datasets may result in unexpectedly under-performing algorithms with the inclusion of outliers. Importantly, this study provides a novel evaluation metric, edge roughness, to quantify physician variation in segmentation which will allow developers to filter clinical training data to optimize model performance.


Subject(s)
Deep Learning , Humans , Artificial Intelligence , Thorax , Algorithms , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods
13.
JAMA Otolaryngol Head Neck Surg ; 150(2): 151-156, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38175664

ABSTRACT

Importance: The likelihood that an oral cavity lesion harbors occult invasive disease after biopsy demonstrating carcinoma in situ (CIS) is unknown. While de-escalated treatment strategies may be appealing in the setting of CIS, knowing whether occult invasive disease may be present and its association with survival outcomes would lead to more informed management decisions. Objective: To evaluate rate of occult invasive disease and clinical outcomes in patients with oral cavity CIS. Design, Setting, and Participants: This was a retrospective population-based cohort study using the National Cancer Database and included adults with biopsy-proven oral cavity CIS as the first diagnosis of cancer between 2004 and 2020. Data were analyzed from October 10, 2022, to June 25, 2023. Exposures: Surgical resection vs no surgery. Main Outcomes and Measures: Analyses calculated the rate of occult invasive disease identified on resection of a biopsy-proven CIS lesion. Univariate and multivariate logistic regression with odds ratios and 95% CIs were used to identify significant demographic and clinical characteristics associated with risk of occult invasion (age, year of diagnosis, sex, race and ethnicity, oral cavity subsite, and comorbidity status). Kaplan-Meier curves for overall survival (OS) were calculated for both unresected and resected cohorts (stratified by presence of occult invasive disease). Results: A total of 1856 patients with oral cavity CIS were identified, with 122 who did not undergo surgery (median [range] age, 65 [26-90] years; 48 female individuals [39.3%] and 74 male individuals [60.7%]) and 1458 who underwent surgical resection and had documented pathology (median [range] age, 62 [21-90] years; 490 female individuals [33.6%] and 968 male individuals [66.4%]). Of the 1580 patients overall, 52 (3.3%) were Black; 39 (2.5%), Hispanic; 1365 (86.4%), White; and 124 (7.8%), other, not specified. Among those who proceeded with surgery with documented pathology, 408 patients (28.0%) were found to have occult invasive disease. Higher-risk features were present in 45 patients (11.0%) for final margin positivity, 16 patients (3.9%) for lymphovascular invasion, 13 patients (3.2%) for high-grade invasive disease, and 14 patients (3.4%) for nodal involvement. For those patients with occult disease, staging according to the American Joint Committee on Cancer's AJCC Cancer Staging Manual, eighth edition, was pT1 in 341 patients (83.6%), pT2 in 41 (10.0%), and pT3 or pT4 disease in 26 (6.4%). Factors associated with greater odds of occult invasive disease at resection were female sex, Black race, and alveolar ridge, vestibule, and retromolar subsite. With median 66-month follow-up, 5-year OS was 85.9% in patients who proceeded with surgical resection vs 59.7% in patients who did not undergo surgery (difference, 26.2%; 95% CI, 19.0%-33.4%). Conclusions and Relevance: This cohort study assessed the risk of concurrent occult invasion with biopsy-proven CIS of the oral cavity, demonstrating that 28.0% had invasive disease at resection. Reassuringly, even in the setting of occult invasion, high-risk disease features were rare, and 5-year OS was nearly 80% with resection. The findings support the practice of definitive resection if feasible following biopsy demonstrating oral cavity CIS.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Adult , Humans , Male , Female , Aged , Middle Aged , Squamous Cell Carcinoma of Head and Neck/pathology , Cohort Studies , Retrospective Studies , Neoplasm Staging , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Biopsy , Head and Neck Neoplasms/pathology
14.
NPJ Digit Med ; 7(1): 6, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200151

ABSTRACT

Social determinants of health (SDoH) play a critical role in patient outcomes, yet their documentation is often missing or incomplete in the structured data of electronic health records (EHRs). Large language models (LLMs) could enable high-throughput extraction of SDoH from the EHR to support research and clinical care. However, class imbalance and data limitations present challenges for this sparsely documented yet critical information. Here, we investigated the optimal methods for using LLMs to extract six SDoH categories from narrative text in the EHR: employment, housing, transportation, parental status, relationship, and social support. The best-performing models were fine-tuned Flan-T5 XL for any SDoH mentions (macro-F1 0.71), and Flan-T5 XXL for adverse SDoH mentions (macro-F1 0.70). Adding LLM-generated synthetic data to training varied across models and architecture, but improved the performance of smaller Flan-T5 models (delta F1 + 0.12 to +0.23). Our best-fine-tuned models outperformed zero- and few-shot performance of ChatGPT-family models in the zero- and few-shot setting, except GPT4 with 10-shot prompting for adverse SDoH. Fine-tuned models were less likely than ChatGPT to change their prediction when race/ethnicity and gender descriptors were added to the text, suggesting less algorithmic bias (p < 0.05). Our models identified 93.8% of patients with adverse SDoH, while ICD-10 codes captured 2.0%. These results demonstrate the potential of LLMs in improving real-world evidence on SDoH and assisting in identifying patients who could benefit from resource support.

15.
Radiother Oncol ; 190: 110034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030080

ABSTRACT

BACKGROUND/PURPOSE: Central/ultra-central thoracic tumors are challenging to treat with stereotactic radiotherapy due potential high-grade toxicity. Stereotactic MR-guided adaptive radiation therapy (SMART) may improve the therapeutic window through motion control with breath-hold gating and real-time MR-imaging as well as the option for daily online adaptive replanning to account for changes in target and/or organ-at-risk (OAR) location. MATERIALS/METHODS: 26 central (19 ultra-central) thoracic oligoprogressive/oligometastatic tumors treated with isotoxic (OAR constraints-driven) 5-fraction SMART (median 50 Gy, range 35-60) between 10/2019-10/2022 were reviewed. Central tumor was defined as tumor within or touching 2 cm around proximal tracheobronchial tree (PBT) or adjacent to mediastinal/pericardial pleura. Ultra-central was defined as tumor abutting the PBT, esophagus, or great vessel. Hard OAR constraints observed were ≤ 0.03 cc for PBT V40, great vessel V52.5, and esophagus V35. Local failure was defined as tumor progression/recurrence within the planning target volume. RESULTS: Tumor abutted the PBT in 31 %, esophagus in 31 %, great vessel in 65 %, and heart in 42 % of cases. 96 % of fractions were treated with reoptimized plan, necessary to meet OAR constraints (80 %) and/or target coverage (20 %). Median follow-up was 19 months (27 months among surviving patients). Local control (LC) was 96 % at 1-year and 90 % at 2-years (total 2/26 local failure). 23 % had G2 acute toxicities (esophagitis, dysphagia, anorexia, nausea) and one (4 %) had G3 acute radiation dermatitis. There were no G4-5 acute toxicities. There was no symptomatic pneumonitis and no G2 + late toxicities. CONCLUSION: Isotoxic 5-fraction SMART resulted in high rates of LC and minimal toxicity. This approach may widen the therapeutic window for high-risk oligoprogressive/oligometastatic thoracic tumors.


Subject(s)
Lung Neoplasms , Radiation Injuries , Radiosurgery , Thoracic Neoplasms , Humans , Radiotherapy Planning, Computer-Assisted/methods , Neoplasm Recurrence, Local , Radiosurgery/methods , Thoracic Neoplasms/radiotherapy , Magnetic Resonance Imaging/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology
16.
Nat Commun ; 14(1): 6863, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945573

ABSTRACT

Lean muscle mass (LMM) is an important aspect of human health. Temporalis muscle thickness is a promising LMM marker but has had limited utility due to its unknown normal growth trajectory and reference ranges and lack of standardized measurement. Here, we develop an automated deep learning pipeline to accurately measure temporalis muscle thickness (iTMT) from routine brain magnetic resonance imaging (MRI). We apply iTMT to 23,876 MRIs of healthy subjects, ages 4 through 35, and generate sex-specific iTMT normal growth charts with percentiles. We find that iTMT was associated with specific physiologic traits, including caloric intake, physical activity, sex hormone levels, and presence of malignancy. We validate iTMT across multiple demographic groups and in children with brain tumors and demonstrate feasibility for individualized longitudinal monitoring. The iTMT pipeline provides unprecedented insights into temporalis muscle growth during human development and enables the use of LMM tracking to inform clinical decision-making.


Subject(s)
Growth Charts , Temporal Muscle , Male , Female , Humans , Child , Temporal Muscle/diagnostic imaging , Temporal Muscle/pathology
18.
JTO Clin Res Rep ; 4(10): 100559, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37732171

ABSTRACT

Introduction: Thoracic radiotherapy (TRT) is increasingly used in patients receiving osimertinib for advanced NSCLC, and the risk of pneumonitis is not established. We investigated the risk of pneumonitis and potential risk factors in this population. Methods: We performed a multi-institutional retrospective analysis of patients under active treatment with osimertinib who received TRT between April 2016 and July 2022 at two institutions. Clinical characteristics, including whether osimertinib was held during TRT and pneumonitis incidence and grade (Common Terminology Criteria for Adverse Events version 5.0) were documented. Logistic regression analysis was performed to identify risk factors associated with grade 2 or higher (2+) pneumonitis. Results: The median follow-up was 10.2 months (range: 1.9-53.2). Of 102 patients, 14 (13.7%) developed grade 2+ pneumonitis, with a median time to pneumonitis of 3.2 months (range: 1.5-6.3). Pneumonitis risk was not significantly increased in patients who continued osimertinib during TRT compared with patients who held osimertinib during TRT (9.1% versus 15.0%, p = 0.729). Three patients (2.9%) had grade 3 pneumonitis, none had grade 4, and two patients had grade 5 events (2.0%, diagnosed 3.2 mo and 4.4 mo post-TRT). Mean lung dose was associated with the development of grade 2+ pneumonitis in multivariate analysis (OR = 1.19, p = 0.021). Conclusions: Although the overall rate of pneumonitis in patients receiving TRT and osimertinib was relatively low, there was a small risk of severe toxicity. The mean lung dose was associated with an increased risk of developing pneumonitis. These findings inform decision-making for patients and providers.

19.
medRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37745558

ABSTRACT

Because humans age at different rates, a person's physical appearance may yield insights into their biological age and physiological health more reliably than their chronological age. In medicine, however, appearance is incorporated into medical judgments in a subjective and non-standardized fashion. In this study, we developed and validated FaceAge, a deep learning system to estimate biological age from easily obtainable and low-cost face photographs. FaceAge was trained on data from 58,851 healthy individuals, and clinical utility was evaluated on data from 6,196 patients with cancer diagnoses from two institutions in the United States and The Netherlands. To assess the prognostic relevance of FaceAge estimation, we performed Kaplan Meier survival analysis. To test a relevant clinical application of FaceAge, we assessed the performance of FaceAge in end-of-life patients with metastatic cancer who received palliative treatment by incorporating FaceAge into clinical prediction models. We found that, on average, cancer patients look older than their chronological age, and looking older is correlated with worse overall survival. FaceAge demonstrated significant independent prognostic performance in a range of cancer types and stages. We found that FaceAge can improve physicians' survival predictions in incurable patients receiving palliative treatments, highlighting the clinical utility of the algorithm to support end-of-life decision-making. FaceAge was also significantly associated with molecular mechanisms of senescence through gene analysis, while age was not. These findings may extend to diseases beyond cancer, motivating using deep learning algorithms to translate a patient's visual appearance into objective, quantitative, and clinically useful measures.

20.
medRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37609311

ABSTRACT

Purpose: To develop and externally validate a scan-to-prediction deep-learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pLGG. Materials and Methods: We conducted a retrospective study of two pLGG datasets with linked genomic and diagnostic T2-weighted MRI of patients: BCH (development dataset, n=214 [60 (28%) BRAF fusion, 50 (23%) BRAF V600E, 104 (49%) wild-type), and Child Brain Tumor Network (CBTN) (external validation, n=112 [60 (53%) BRAF-Fusion, 17 (15%) BRAF-V600E, 35 (32%) wild-type]). We developed a deep learning pipeline to classify BRAF mutational status (V600E vs. fusion vs. wildtype) via a two-stage process: 1) 3D tumor segmentation and extraction of axial tumor images, and 2) slice-wise, deep learning-based classification of mutational status. We investigated knowledge-transfer and self-supervised approaches to prevent model overfitting with a primary endpoint of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, we developed a novel metric, COMDist, that quantifies the accuracy of model attention around the tumor. Results: A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest macro-average AUC (0.82 [95% CI: 0.70-0.90]) and accuracy (77%) on internal validation, with an AUC improvement of +17.7% and a COMDist improvement of +6.4% versus training from scratch. On external validation, the TransferX model yielded AUC (0.73 [95% CI 0.68-0.88]) and accuracy (75%). Conclusion: Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pLGG mutational status prediction in a limited data scenario.

SELECTION OF CITATIONS
SEARCH DETAIL
...