Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724463

ABSTRACT

BACKGROUND: Adoptive cell therapy, such as chimeric antigen receptor (CAR)-T cell therapy, has improved patient outcomes for hematological malignancies. Currently, four of the six FDA-approved CAR-T cell products use the FMC63-based αCD19 single-chain variable fragment, derived from a murine monoclonal antibody, as the extracellular binding domain. Clinical studies demonstrate that patients develop humoral and cellular immune responses to the non-self CAR components of autologous CAR-T cells or donor-specific antigens of allogeneic CAR-T cells, which is thought to potentially limit CAR-T cell persistence and the success of repeated dosing. METHODS: In this study, we implemented a one-shot approach to prevent rejection of engineered T cells by simultaneously reducing antigen presentation and the surface expression of both Classes of the major histocompatibility complex (MHC) via expression of the viral inhibitors of transporter associated with antigen processing (TAPi) in combination with a transgene coding for shRNA targeting class II MHC transactivator (CIITA). The optimal combination was screened in vitro by flow cytometric analysis and mixed lymphocyte reaction assays and was validated in vivo in mouse models of leukemia and lymphoma. Functionality was assessed in an autologous setting using patient samples and in an allogeneic setting using an allogeneic mouse model. RESULTS: The combination of the Epstein-Barr virus TAPi and an shRNA targeting CIITA was efficient and effective at reducing cell surface MHC classes I and II in αCD19 'stealth' CAR-T cells while retaining in vitro and in vivo antitumor functionality. Mixed lymphocyte reaction assays and IFNγ ELISpot assays performed with T cells from patients previously treated with autologous αCD19 CAR-T cells confirm that CAR T cells expressing the stealth transgenes evade allogeneic and autologous anti-CAR responses, which was further validated in vivo. Importantly, we noted anti-CAR-T cell responses in patients who had received multiple CAR-T cell infusions, and this response was reduced on in vitro restimulation with autologous CARs containing the stealth transgenes. CONCLUSIONS: Together, these data suggest that the proposed stealth transgenes may reduce the immunogenicity of autologous and allogeneic cellular therapeutics. Moreover, patient data indicate that repeated doses of autologous FMC63-based αCD19 CAR-T cells significantly increased the anti-CAR T cell responses in these patients.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Animals , Humans , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Transgenes , T-Lymphocytes/immunology
2.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38393682

ABSTRACT

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Subject(s)
CD3 Complex , Endopeptidases , GPI-Linked Proteins , Immunotherapy, Adoptive , Mesothelin , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , CD3 Complex/immunology , CD3 Complex/metabolism , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Membrane Proteins/immunology , Membrane Proteins/metabolism , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Adenocarcinoma/immunology , Adenocarcinoma/therapy , Adenocarcinoma/pathology
3.
Cell Chem Biol ; 31(2): 338-348.e5, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37989314

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency. Here, we developed bifunctional fusion "degrader" proteins that bridge one or more target proteins and an E3 ligase complex to enforce target ubiquitination and degradation. Conditional degradation strategies were developed using inducible degrader transgene expression or small molecule-dependent E3 recruitment. We further engineered degraders to block SMAD-dependent TGFß signaling using a domain from the SARA protein to target both SMAD2 and SMAD3. SMAD degrader CAR T cells were less susceptible to suppression by TGFß and demonstrated enhanced anti-tumor potency in vivo. These results demonstrate a clinically suitable synthetic biology platform to reprogram E3 ligase target specificity for conditional, multi-specific endogenous protein degradation, with promising applications including enhancing the potency of CAR T cell therapy.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Immunotherapy, Adoptive/methods , Ubiquitination , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
4.
Leukemia ; 38(3): 590-600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38123696

ABSTRACT

CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.


Subject(s)
Interleukin-7 , Receptors, Antigen, T-Cell , Humans , Lenalidomide/pharmacology , Receptors, Antigen, T-Cell/genetics , Interleukin-7/metabolism , Cell Line, Tumor , T-Lymphocytes/metabolism , Immunotherapy, Adoptive , Cytokines/metabolism
5.
Nat Commun ; 14(1): 7509, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980341

ABSTRACT

Chimeric Antigen Receptor (CAR) T cells directed to B cell maturation antigen (BCMA) mediate profound responses in patients with multiple myeloma, but most patients do not achieve long-term complete remissions. In addition, recent evidence suggests that high-affinity binding to BCMA can result in on-target, off-tumor activity in the basal ganglia and can lead to fatal Parkinsonian-like disease. Here we develop CAR T cells against multiple myeloma using a binder to targeting transmembrane activator and CAML interactor (TACI) in mono and dual-specific formats with anti-BCMA. These CARs have robust, antigen-specific activity in vitro and in vivo. We also show that TACI RNA expression is limited in the basal ganglia, which may circumvent some of the toxicities recently reported with BCMA CARs. Thus, single-targeting TACI CARs may have a safer toxicity profile, whereas dual-specific BCMA-TACI CAR T cells have potential to avoid the antigen escape that can occur with single-antigen targeting.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/metabolism , Immunotherapy, Adoptive , B-Cell Maturation Antigen/genetics , T-Lymphocytes
6.
Neurooncol Adv ; 5(1): vdac185, 2023.
Article in English | MEDLINE | ID: mdl-36751672

ABSTRACT

Background: Chimeric antigen receptor (CAR) T cells have achieved remarkable responses in patients with hematological malignancies; however, the potential of this therapeutic platform for solid tumors like glioblastoma (GBM) has been limited, due in large part to the targeting of single antigens in a heterogeneous disease. Strategies that allow CAR T cells to engage multiple antigens concomitantly may broaden therapeutic responses and mitigate the effects of immune escape. Methods: Here we have developed a novel, dual-specific, tandem CAR T (TanCART) cell with the ability to simultaneously target both EGFRvIII and IL-13Rα2, two well-characterized tumor antigens that are frequently found on the surface of GBM cells but completely absent from normal brain tissues. We employed both standard immunological assays and multiple orthotopic preclinical models including patient-derived xenograft to demonstrate efficacy of this approach against heterogeneous tumors. Results: Tandem CAR T cells displayed enhanced cytotoxicity in vitro against heterogeneous GBM populations, including patient-derived brain tumor cultures (P < .05). Compared to CAR T cells targeting single antigens, dual antigen engagement through the tandem construct was necessary to achieve long-term, complete, and durable responses in orthotopic murine models of heterogeneous GBM, including patient-derived xenografts (P < .05). Conclusions: We demonstrate that TanCART is effective against heterogeneous tumors in the brain. These data lend further credence to the development of multi-specific CAR T cells in the treatment of GBM and other cancers.

7.
Nat Med ; 28(9): 1848-1859, 2022 09.
Article in English | MEDLINE | ID: mdl-36097221

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment; however, failure mechanisms are identified in only a fraction of cases. To gain new insights into the basis of clinical response, we performed single-cell transcriptome sequencing of 105 pretreatment and post-treatment peripheral blood mononuclear cell samples, and infusion products collected from 32 individuals with large B cell lymphoma treated with either of two CD19 CAR-T products: axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel). Expansion of proliferative memory-like CD8 clones was a hallmark of tisa-cel response, whereas axi-cel responders displayed more heterogeneous populations. Elevations in CAR-T regulatory cells among nonresponders to axi-cel were detected, and these populations were capable of suppressing conventional CAR-T cell expansion and driving late relapses in an in vivo model. Our analyses reveal the temporal dynamics of effective responses to CAR-T therapy, the distinct molecular phenotypes of CAR-T cells with differing designs, and the capacity for even small increases in CAR-T regulatory cells to drive relapse.


Subject(s)
Biological Products , Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Antigens, CD19 , Humans , Immunotherapy, Adoptive/adverse effects , Leukocytes, Mononuclear , Lymphoma, Large B-Cell, Diffuse/pathology , Neoplasm Recurrence, Local/drug therapy , Receptors, Chimeric Antigen/genetics
8.
Cancer Cell ; 40(5): 494-508.e5, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35452603

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy is effective in lymphoid malignancies, but there has been limited data in myeloid cancers. Here, we start with a CD27-based CAR to target CD70 ("native") in acute myeloid leukemia (AML), and we find modest efficacy in vivo, consistent with prior reports. We then use orthogonal approaches to increase binding on both the tumor and CAR-T cell sides of the immune synapse: a pharmacologic approach (azacitidine) to increase antigen density of CD70 in myeloid tumors, and an engineering approach to stabilize binding of the CAR to CD70. To accomplish the latter, we design a panel of hinge-modified regions to mitigate cleavage of the extracellular portion of CD27. Our CD8 hinge and transmembrane-modified CD70 CAR-T cells are less prone to cleavage, have enhanced binding avidity, and increased expansion, leading to more potent in vivo activity. This enhanced CD70-targeted CAR is a promising candidate for further clinical development.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , Leukemia, Myeloid, Acute/therapy , T-Lymphocytes
9.
Nature ; 604(7906): 563-570, 2022 04.
Article in English | MEDLINE | ID: mdl-35418687

ABSTRACT

Chimeric antigen receptor (CAR) therapy has had a transformative effect on the treatment of haematologic malignancies1-6, but it has shown limited efficacy against solid tumours. Solid tumours may have cell-intrinsic resistance mechanisms to CAR T cell cytotoxicity. Here, to systematically identify potential resistance pathways in an unbiased manner, we conducted a genome-wide CRISPR knockout screen in glioblastoma, a disease in which CAR T cells have had limited efficacy7,8. We found that the loss of genes in the interferon-γ receptor (IFNγR) signalling pathway (IFNGR1, JAK1 or JAK2) rendered glioblastoma and other solid tumours more resistant to killing by CAR T cells both in vitro and in vivo. However, loss of this pathway did not render leukaemia or lymphoma cell lines insensitive to CAR T cells. Using transcriptional profiling, we determined that glioblastoma cells lacking IFNγR1 had lower upregulation of cell-adhesion pathways after exposure to CAR T cells. We found that loss of IFNγR1 in glioblastoma cells reduced overall CAR T cell binding duration and avidity. The critical role of IFNγR signalling in susceptibility of solid tumours to CAR T cells is surprising, given that CAR T cells do not require traditional antigen-presentation pathways. Instead, in glioblastoma tumours, IFNγR signalling was required for sufficient adhesion of CAR T cells to mediate productive cytotoxicity. Our work demonstrates that liquid and solid tumours differ in their interactions with CAR T cells and suggests that enhancing binding interactions between T cells and tumour cells may yield improved responses in solid tumours.


Subject(s)
Glioblastoma , Receptors, Chimeric Antigen , Cell Death , Glioblastoma/genetics , Glioblastoma/therapy , Humans , Immunotherapy, Adoptive , T-Lymphocytes/pathology
10.
Blood Cancer Discov ; 3(2): 136-153, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35015685

ABSTRACT

Chimeric antigen receptor (CAR) T cells induce impressive responses in patients with hematologic malignancies but can also trigger cytokine release syndrome (CRS), a systemic toxicity caused by activated CAR T cells and innate immune cells. Although IFNγ production serves as a potency assay for CAR T cells, its biologic role in conferring responses in hematologic malignancies is not established. Here we show that pharmacologic blockade or genetic knockout of IFNγ reduced immune checkpoint protein expression with no detrimental effect on antitumor efficacy against hematologic malignancies in vitro or in vivo. Furthermore, IFNγ blockade reduced macrophage activation to a greater extent than currently used cytokine antagonists in immune cells from healthy donors and serum from patients with CAR T-cell-treated lymphoma who developed CRS. Collectively, these data show that IFNγ is not required for CAR T-cell efficacy against hematologic malignancies, and blocking IFNγ could simultaneously mitigate cytokine-related toxicities while preserving persistence and antitumor efficacy. SIGNIFICANCE: Blocking IFNγ in CAR T cells does not impair their cytotoxicity against hematologic tumor cells and paradoxically enhances their proliferation and reduces macrophage-mediated cytokines and chemokines associated with CRS. These findings suggest that IFNγ blockade may improve CAR T-cell function while reducing treatment-related toxicity in hematologic malignancies. See related content by McNerney et al., p. 90 (17). This article is highlighted in the In This Issue feature, p. 85.


Subject(s)
Hematologic Neoplasms , Immunotherapy, Adoptive , Cytokine Release Syndrome , Cytokines/metabolism , Hematologic Neoplasms/therapy , Humans , Immunotherapy, Adoptive/adverse effects , Interferon-gamma/metabolism , Macrophage Activation , T-Lymphocytes/metabolism
11.
Sci Transl Med ; 13(575)2021 01 06.
Article in English | MEDLINE | ID: mdl-33408186

ABSTRACT

Cell-based therapies are emerging as effective agents against cancer and other diseases. As autonomous "living drugs," these therapies lack precise control. Chimeric antigen receptor (CAR) T cells effectively target hematologic malignancies but can proliferate rapidly and cause toxicity. We developed ON and OFF switches for CAR T cells using the clinically approved drug lenalidomide, which mediates the proteasomal degradation of several target proteins by inducing interactions between the CRL4CRBN E3 ubiquitin ligase and a C2H2 zinc finger degron motif. We performed a systematic screen to identify "super-degron" tags with enhanced sensitivity to lenalidomide-induced degradation and used these degradable tags to generate OFF-switch degradable CARs. To create an ON switch, we engineered a lenalidomide-inducible dimerization system and developed split CARs that required both lenalidomide and target antigen for activation. Subtherapeutic lenalidomide concentrations controlled the effector functions of ON- and OFF-switch CAR T cells. In vivo, ON-switch split CARs demonstrated lenalidomide-dependent antitumor activity, and OFF-switch degradable CARs were depleted by drug treatment to limit inflammatory cytokine production while retaining antitumor efficacy. Together, the data showed that these lenalidomide-gated switches are rapid, reversible, and clinically suitable systems to control transgene function in diverse gene- and cell-based therapies.


Subject(s)
Lenalidomide , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Jurkat Cells , Receptors, Antigen, T-Cell , Ubiquitin-Protein Ligases
12.
J Immunother Cancer ; 8(2)2020 09.
Article in English | MEDLINE | ID: mdl-32900862

ABSTRACT

BACKGROUND: Adoptive cell therapy with chimeric antigen receptor T cells (CAR-T) has become a standard treatment for patients with certain aggressive B cell malignancies and holds promise to improve the care of patients suffering from numerous other cancers in the future. However, the high manufacturing cost of CAR-T cell therapies poses a major barrier to their broader clinical application. Among the key cost drivers of CAR-T production are single-use reagents for T cell activation and clinical-grade viral vector. The presence of variable amounts of contaminating monocytes in the starting material poses an additional challenge to CAR-T manufacturing, since they can impede T cell stimulation and transduction, resulting in manufacturing failure. METHODS: We created K562-based artificial antigen-presenting cells (aAPC) with genetically encoded T cell stimulation and costimulation that represent an inexhaustible source for T cell activation. We additionally disrupted endogenous expression of the low-density lipoprotein receptor (LDLR) on these aAPC (aAPC-ΔLDLR) using CRISPR-Cas9 gene editing nucleases to prevent inadvertent lentiviral transduction and avoid the sink effect on viral vector during transduction. Using various T cell sources, we produced CD19-directed CAR-T cells via aAPC-ΔLDLR-based activation and tested their in vitro and in vivo antitumor potency against B cell malignancies. RESULTS: We found that lack of LDLR expression on our aAPC-ΔLDLR conferred resistance to lentiviral transduction during CAR-T production. Using aAPC-ΔLDLR, we achieved efficient expansion of CAR-T cells even from unpurified starting material like peripheral blood mononuclear cells or unmanipulated leukapheresis product, containing substantial proportions of monocytes. CD19-directed CAR-T cells that we produced via aAPC-ΔLDLR-based expansion demonstrated potent antitumor responses in preclinical models of acute lymphoblastic leukemia and B-cell lymphoma. CONCLUSIONS: Our aAPC-ΔLDLR represent an attractive approach for manufacturing of lentivirally transduced T cells that may be simpler and more cost efficient than currently available methods.


Subject(s)
Antigen-Presenting Cells/metabolism , Immunotherapy, Adoptive/methods , Lentivirus/genetics , Transduction, Genetic/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...