Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 1(1): 39-45, 2008.
Article in English | MEDLINE | ID: mdl-19794907

ABSTRACT

Arsenic is a naturally occurring element that is ubiquitously present in the environment. High concentration of naturally occurring arsenic in drinking water is a major health problem in different parts of the world. Despite arsenic being a health hazard and a well documented carcinogen, no safe, effective and specific preventive or therapeutic measures are available. Among various recent strategies adopted, administration of an antioxidant has been reported to be the most effective. The present study was designed to evaluate the therapeutic efficacy of monoisoamyl dimercaptosuccinic acid (MiADMSA), administered either individually or in combination with taurine post chronic arsenic exposure in rats. Arsenic exposed male rats (25 ppm, sodium arsenite in drinking water for 24 weeks) were treated with taurine (100 mg/kg, i.p., once daily), monoisoamyl dimercaptosuccinic acid (MiADMSA) (50 mg/kg, oral, once daily) either individually or in combination for 5 consecutive days. Biochemical variables indicative of oxidative stress along-with arsenic concentration in blood, liver and kidney were measured. Arsenic exposure significantly reduced blood delta-aminolevulinic acid dehydratase (ALAD) activity, a key enzyme involved in the heme biosynthesis and enhanced zinc protoporphyrin (ZPP) level. Clinical hematological variables like white blood cells (WBC), mean cell hemoglobin (MCH), and mean cell hemoglobin concentration (MCHC) showed significant decrease with a significant elevation in platelet (PLT) count. These changes were accompanied by significant decrease in superoxide dismutase (SOD) activity and increased catalase activity. Arsenic exposure caused a significant decrease in hepatic and renal glutathione (GSH) level and an increase in oxidized glutathione (GSSG). These biochemical changes were correlated with an increased uptake of arsenic in blood, liver and kidney. Administration of taurine significantly reduced hepatic oxidative stress however co-administration of a higher dose of taurine (100 mg/kg) and MiADMSA provided more pronounced effects in improving the antioxidant status of liver and kidney and reducing body arsenic burden compared to the individual treatment of MiADMSA or taurine. The results suggest that in order to achieve better effects of chelation therapy, co-administration of taurine with MiADMSA might be preferred.


Subject(s)
Arsenic Poisoning/prevention & control , Arsenic/toxicity , Oxidative Stress/drug effects , Succimer/analogs & derivatives , Taurine/pharmacology , Animals , Antidotes/pharmacology , Arsenic/blood , Arsenic/metabolism , Arsenic Poisoning/blood , Arsenic Poisoning/metabolism , Chelating Agents/pharmacology , Male , Rats , Rats, Wistar , Succimer/pharmacology , Taurine/metabolism
2.
J Trace Elem Med Biol ; 20(3): 197-204, 2006.
Article in English | MEDLINE | ID: mdl-16959597

ABSTRACT

Arsenic is a widespread environmental toxicant that may cause neuropathy, skin lesions, vascular lesions and cancer upon prolonged exposure. Improving nourishment like supplementation of micronutrients, antioxidants, vitamins and amino acids could be able to halve the risk in those who were previously the poor nourished. The present study was planned to investigate the preventive effects of zinc and n-acetylcysteine (NAC) supplementation either alone or in combination with arsenic on selected biochemical variables indicative of oxidative stress and liver injury in male rats. For 3 weeks 25 male wistar rats were exposed to arsenic as sodium arsenite (2 mg/kg, orally through gastric intubation) either alone or in combination with NAC (10 mg/kg, intraperitoneally), zinc (5 mg/kg, orally) or zinc plus NAC. Animals were sacrificed 24h after the last dosing for various biochemical parameters. Concomitant administration of zinc with arsenic showed remarkable protection against blood delta-aminolevulinic acid dehydratase (ALAD) activity as well as providing protection to hepatic biochemical variables indicative of oxidative stress (like thiobarbituric acid reactive substances (TBARS) level, catalase) and tissue injury. NAC supplementation on the other hand, was moderately effective in protecting animals from the toxic effects of arsenic. Interestingly, concomitant administration of zinc and NAC was most effective compared to zinc or NAC in eliciting above-mentioned protective effects. The above results suggest significant protective value of combined zinc and NAC administration in acute arsenic exposure.


Subject(s)
Acetylcysteine/administration & dosage , Arsenic/toxicity , Oxidative Stress/drug effects , Zinc/administration & dosage , Administration, Oral , Alanine Transaminase/blood , Animals , Arsenic/antagonists & inhibitors , Arsenic/pharmacokinetics , Arsenites/toxicity , Aspartate Aminotransferases/blood , Drug Synergism , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Porphobilinogen Synthase/blood , Rats , Rats, Wistar , Sodium Compounds/toxicity , Tissue Distribution , Zinc/blood
3.
Biol Trace Elem Res ; 110(1): 43-59, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16679547

ABSTRACT

The present study deals with the therapeutic potential of combined administration of N-acetylcysteine (NAC) along with monoisoamyl DMSA (MiADMSA) against chronic arsenic poisoning in guinea pigs. Animal were exposed to 50 ppm arsenic in drinking water for 8 mo and subsequently treated for 5 consecutive days with 100 mg/kg NAC (orally) and MiADMSA (intraperitoneally), individually or in combination (50 mg/kg each). Arsenic exposure produced a significant depletion of blood delta- aminolevulinic acid dehydrate (ALAD) activity, increased the blood zinc protoporphyrin (ZPP) level, and reduced blood and liver glutathione (GSH) levels in guinea pigs. Hepatic oxidized glutathione (GSSG) and thiobarbituric acid reactive substance (TBARS) levels showed a marked increase, whereas hepatic alkaline phosphatase (ALP) activity decreased and acid phosphatase (ACP) activity increased on arsenic exposure. Significant depletion of liver transaminase activities on arsenic exposure suggests organ injury. Administration of MiADMSA, alone and in combination with NAC after arsenic exposure, was able to significantly enhance hepatic GSH and to reduce GSSG and TBARS levels compared to the arsenic control. Biochemical variables indicative of liver injury generally remained insensitive to any of these treatments. The recoveries in parameters indicative of oxidative stress were more marked in guinea pigs treated with combined administration of NAC and MiADMSA than monotherapy. Interestingly, there was a more pronounced depletion of arsenic from blood and tissues after combined treatment with NAC plus MiADMSA than MiADMSA. Blood and tissues copper, zinc, iron, and calcium concentrations showed a significant increase after arsenic exposure, which showed improvement, particularly after combined administration of MiADMSA and NAC. Based on these data, a proposal can be made that greater effectiveness in chelation treatment against chronic arsenic poisoning (i.e., turnover in the oxidative stress and removed of arsenic from the system) could be achieved by combined administration of an antioxidant (preferably having a thiol moiety) with MiADMSA.


Subject(s)
Acetylcysteine/pharmacology , Arsenic/therapeutic use , Chelation Therapy , Oxidative Stress/drug effects , Succimer/analogs & derivatives , Animals , Guinea Pigs , Male , Succimer/pharmacology
4.
Environ Toxicol Pharmacol ; 20(3): 456-64, 2005 Nov.
Article in English | MEDLINE | ID: mdl-21783626

ABSTRACT

Moringa oleifera Lamarack (English: Horseradish-tree, Drumstick-tree; Hindi: Saijan; Sanskrit: Shigru) belongs to the Moringaceae family, is generally known in the developing world as a vegetable, a medicinal plant and a source of vegetable oil. Besides, the plant is reported to have various biological activities, including hypocholesterolemic agent, regulation of thyroid hormone status, anti-diabetic agent, gastric ulcers, anti-tumor agent and hypotensive agent, used for treating various diseases such as inflammation, cardiovascular and liver diseases. Therapeutic efficacy of oral administration of seed powder of M. oleifera (500mg/kg, orally, once daily) post arsenic exposure (100ppm in drinking water for 4 months) was investigated in rats. Animals exposed to arsenic(III) showed a significant inhibition of δ-aminolevulinic acid dehydratase (ALAD) activity, decrease in reduced glutathione (GSH) level and an increase in reactive oxygen species (ROS) in blood. On the other hand, a significant decrease in hepatic ALAD, and an increase in δ-aminolevulinic acid synthetase (ALAS) activity was noted after arsenic exposure. These changes were accompanied by an increase in thiobarbiturc acid reactive substances (TBARS) level in liver and kidney. Activities of liver, kidney and brain superoxide dismutase (SOD) and catalase also showed a decrease on arsenic exposure. Administration of M. oleifera seed powder post arsenic exposure, exhibited significant recovery in blood ALAD activity while, it restored blood GSH and ROS levels. Most of the other blood biochemical variables remained unchanged on M. oleifera supplementation. A significant protection in the altered ALAD and ALAS activities of liver and TBARS level in liver and kidney was however, observed after M. oleifera administration. Interestingly, there was a marginal but significant depletion of arsenic from blood, liver and kidneys. The results, thus lead us to conclude that post arsenic exposure administration with the seed powder of M. oleifera has significant role in protecting animals from arsenic-induced oxidative stress and in the depletion of arsenic concentration. Further studies thus can be recommended for determining the effect of co-administrating seed powder of M. oleifera during chelation therapy with a thiol chelator.

5.
Ecotoxicol Environ Saf ; 58(1): 37-43, 2004 May.
Article in English | MEDLINE | ID: mdl-15087161

ABSTRACT

The influence of the coadministration of vitamin C or vitamin E on the efficacy of two thiol chelators, meso-2,3-dimercaptosuccinic acid (DMSA) or monoisoamyl DMSA, in counteracting chronic arsenic toxicity was investigated in rats. Vitamin C and vitamin E were only mildly effective when given alone or in combination with the above chelators in mobilizing arsenic from the target tissues. However, combined administration of vitamin C plus DMSA and vitamin E plus MiADMSA led to a more pronounced depletion of brain arsenic. The supplementation of vitamins was significantly effective in restoring inhibition of blood delta-aminolevulinic acid dehydratase (ALAD) oxidative stress in liver, kidneys, and brain as reflected by reduced levels of thiobarbituric acid reactive substance and oxidized and reduced glutathione levels. The results thus lead us to suggest that coadministration of vitamin E or vitamin C may be useful in the restoration of altered biochemical variables (particularly the effects on heme biosynthesis and oxidative injury) although it has only a limited role in depleting arsenic burden.


Subject(s)
Antioxidants/pharmacology , Arsenic Poisoning/drug therapy , Arsenic Poisoning/veterinary , Arsenic/pharmacokinetics , Ascorbic Acid/pharmacology , Chelating Agents/pharmacology , Succimer/analogs & derivatives , Succimer/pharmacology , Animals , Antioxidants/administration & dosage , Ascorbic Acid/administration & dosage , Brain Chemistry , Chelating Agents/administration & dosage , Drug Interactions , Drug Therapy, Combination , Heme/biosynthesis , Male , Oxidative Stress , Rats , Rats, Wistar , Succimer/administration & dosage , Tissue Distribution
6.
Toxicology ; 195(2-3): 127-46, 2004 Feb 15.
Article in English | MEDLINE | ID: mdl-14751669

ABSTRACT

The dose dependent effects of monoisoamyl and monomethyl esters of meso 2,3-dimercaptosuccinic acid (DMSA) (0.1, 0.3 and 0.5 mmol kg(-1), intraperitoneally (i.p.) once daily for 5 days) to offset the characteristic biochemical, immunological, oxidative stress consequences and DNA damage (based on DNA fragmentation and comet assay) following sub-chronic administration of gallium arsenide and the mobilization of gallium and arsenic were examined. The effects of these chelators alone in normal animals too were examined on above-mentioned variables. Male Wistar rats were exposed to 10 mg kg(-1), GaAs, orally once daily for 12 weeks and were administered DMSA or two of its monoesters (monoisoamyl or monomethyl) for 5 consecutive days. DMSA was used as a positive control. DMSA and its derivatives, when given alone, generally have no adverse effects on various parameters. After 5 days of chelation therapy in GaAs pre-exposed rats, MiADMSA was most effective in the reduction of inhibited blood delta-aminolevulinic acid dehydratase (ALAD) activity and zinc protoporphyrin level while, all three chelators effectively reduced urinary ALA excretion, compared to GaAs alone exposed rats. MiADMSA was also effective, particularly at a dose of 0.3 mmol kg(-1), in enhancing the inhibited hepatic transaminase activities. Parameters indicative of oxidative stress responded less favorably to the chelation therapy, however, three chelators significantly restored the altered immunological variables. MiADMSA was relatively more effective than the other two chelators. GaAs produced significant DNA damage in the liver and kidneys and the chelation treatment had moderate but significant influence in reducing DNA damage. All three chelators significantly reduced arsenic concentration and, however, MiADMSA was more effective than the other two chelators in depleting arsenic concentration from blood and other soft tissues. A dose of 0.3 mmol kg(-1) was found to be relatively better than the other two doses examined. Gallium contents of blood and soft tissues remained uninfluenced by the chelation therapy. Significant loss of copper after MiADMSA administration, however, is of concern and requires further exploration. Additionally, further studies are required for the choice of appropriate dose, duration of treatment and possible toxic/side effects. Keeping in view the promising role of MiADMSA in the treatment of GaAs poisoning, these data will be needed for the registration of this chelating agent as licensed drug for the treatment of gallium arsenide intoxication.


Subject(s)
Antidotes/therapeutic use , Arsenic Poisoning/drug therapy , Chelating Agents/therapeutic use , Gallium/poisoning , Succimer/analogs & derivatives , Succimer/therapeutic use , Aminolevulinic Acid/blood , Animals , Antidotes/administration & dosage , Arsenic Poisoning/metabolism , Arsenicals/blood , Biomarkers/analysis , Chelating Agents/administration & dosage , Chelation Therapy , Comet Assay , DNA Fragmentation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Gallium/blood , Injections, Intraperitoneal , Liver/drug effects , Liver/enzymology , Male , Protoporphyrins/blood , Rats , Rats, Wistar , Succimer/administration & dosage , Treatment Outcome
7.
Comp Biochem Physiol C Toxicol Pharmacol ; 134(3): 319-28, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12643979

ABSTRACT

Aluminum, a known neurotoxic substance, has been suggested as a contributing factor in the pathogenesis of Alzheimer's disease. Therapeutic efficacy of combined administration of citric acid (CA) and N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) was evaluated in decreasing blood and brain aluminum concentration and parameters indicative of hematological disorders and brain oxidative stress. Adult male wistar rats were exposed to drinking water containing 0.2% aluminum nitrate for 8 months and treated once daily for 5 consecutive days with CA (50 mg/kg, orally) or HEDTA (50 mg/kg, intraperitoneally) either individually or in combination. Aluminum exposure significantly inhibited blood delta-aminolevulinic acid dehydratase while increased zinc protoporphyrin confirming changed heme biosynthesis. Significant decrease in the level of glutathione S-transferase in various brain regions and an increase in whole brain thiobarbituric acid reactive substance, and oxidized glutathione (GSSG) levels were also observed. Glutathione peroxidase activity showed a significant increase in cerebellum of aluminum exposed rats. Most of the above parameters responded moderately to the individual treatment with CA and HEDTA, but significantly reduced blood and brain aluminum burden. However, more pronounced beneficial effects on some of the above described parameters were observed when CA and HEDTA were administered concomitantly. Blood and brain aluminum concentration however, showed no further decline on combined treatment over the individual effect with HEDTA or CA. We conclude that in order to achieve an optimum effect of chelation, combined administration of CA and HEDTA might be preferred. However, further work is needed before a final recommendation could be made.


Subject(s)
Aluminum/toxicity , Brain/metabolism , Chelating Agents/pharmacology , Citric Acid/pharmacology , Edetic Acid/analogs & derivatives , Edetic Acid/pharmacology , Oxidative Stress/drug effects , Aluminum/blood , Animals , Brain/drug effects , Brain/enzymology , Citric Acid/blood , Drug Synergism , Glutathione/blood , Glutathione/metabolism , Heme/biosynthesis , Male , Porphobilinogen Synthase/blood , Protoporphyrins/blood , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism
8.
Arch Toxicol ; 76(5-6): 269-76, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12107644

ABSTRACT

Gallium arsenide (GaAs), a group III-VA intermetallic semiconductor, possesses superior electronic and optical properties and has a wide application in the electronics industry. Exposure to GaAs in the semiconductor industry is a potential occupational hazard because cleaning and slicing GaAs ingots to yield the desired wafer could generate GaAs particles. The ability of GaAs to induce oxidative stress has not yet been reported. The present study reports the role of oxidative stress in GaAs-induced haematological and liver disorders and its possible reversal overturn by administration of meso-2,3-dimercaptosuccinic acid (DMSA) and one of its analogue, monoisoamyl DMSA (MiADMSA), either individually or in combination with oxalic acid. While DMSA and MiADMSA are potential arsenic chelators, oxalic acid is reported to be an effective gallium chelator. Male rats were exposed to 10 mg/kg GaAs orally, 5 days a week for 8 weeks. GaAs exposure was then stopped and rats were given a 0.5 mmol/kg dose of succimers (DMSA or MiADMSA), oxalic acid or a combination of the two, intraperitoneally once daily for 5 consecutive days. We found a significant fall in blood delta-aminolevulinic acid dehydratase (ALAD) activity and blood glutathione (GSH) level, and an increased urinary excretion of delta-aminolevulinic acid (ALA) and an increased malondialdehyde (MDA) level in erythrocytes of rats exposed to GaAs. Hepatic GSH levels decreased, whereas there was an increase in GSSG and MDA levels. The results suggest a role of oxidative stress in GaAs-induced haematological and hepatic damage. Administration of DMSA and MiADMSA produced effective recovery in most of the above variables. However, a greater effectiveness of the chelation treatment (i.e. removal of both gallium and arsenic from body organs) could be achieved by combined administration of succimer (DMSA) with oxalic acid since, after MiADMSA administration, a marked loss of essential metals (copper and zinc) is of concern.


Subject(s)
Chelating Agents/therapeutic use , Gallium/toxicity , Oxalic Acid/therapeutic use , Oxidative Stress/drug effects , Succimer/analogs & derivatives , Succimer/therapeutic use , Aminolevulinic Acid/urine , Animals , Arsenicals/blood , Arsenicals/metabolism , Copper/blood , Copper/metabolism , Drug Therapy, Combination , Gallium/blood , Gallium/metabolism , Glutathione/blood , Glutathione/metabolism , Glutathione Disulfide/metabolism , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/blood , Malondialdehyde/metabolism , Porphobilinogen Synthase/blood , Protoporphyrins/blood , Rats , Rats, Wistar , Spleen/drug effects , Spleen/metabolism , Tissue Distribution , Zinc/blood , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...