Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomed Mater ; 19(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38232378

ABSTRACT

The present study demonstrates thein vivosoft tissue regenerative potential of flax seed mucilage (FSM) reinforced collagen aerogels in Wistar rats. The physiochemical, mechanical, and thermal properties were significantly improved upon the incorporation of flax mucilage into collagen when compared to the native collagen scaffold. In addition, the functional group of flax mucilage notably contributed to a better anti-oxidative potential than the control collagen. The flax mucilage-reinforced collagen at 4 mg ml-1concentration showed a 2-fold increase in porosity compared to native collagen. The tensile strength of native collagen, 2 mg ml-1, and 4 mg ml-1FSM reinforced collagen was 5.22 MPa, 9.76 MPa, and 11.16 MPa, respectively, which indicated that 2 mg ml-1and 4 mg ml-1FSM showed an 87% and 113% percentage increase respectively in tensile strength compared to the native collagen control. FSM-reinforced biomatrix showed 97% wound closure on day 15 post-wounding, indicating faster healing than controls, where complete healing occurred only on day 21. The mechanical properties of skin treated with FSM-reinforced collagen scaffold post-healing were considerably better than native collagen. The histological and immunohistochemistry analysis also showed complete restoration of wounded tissue like intact normal skin. The findings paved the way for the development of collagen-polysaccharide mucilage wound dressing materials and their further application in skin tissue engineering.


Subject(s)
Flax , Rats , Animals , Flax/chemistry , Flax/metabolism , Rats, Wistar , Wound Healing , Collagen/chemistry , Polysaccharides/chemistry
2.
Biotechnol Appl Biochem ; 69(2): 714-725, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33751641

ABSTRACT

Overuse of antibiotics has led to the development of multidrug-resistant strains. Antibiotic resistance is a major drawback in the biomedical field since medical implants are prone to infection by biofilms of antibiotic resistant strains of bacteria. With increasing prevalence of antibiotic-resistant pathogenic bacteria, the search for alternative method is utmost importance. In this regard, magnetic nanoparticles are commonly used as a substitute for antibiotics that can circumvent the problem of biofilms growth on the surface of biomedical implants. Iron oxide nanoparticles (IONPs) have unique magnetic properties that can be exploited in various ways in the biomedical applications. IONPs are engineered employing different methods to induce surface functionalization that include the use of polyethyleneimine and oleic acid. IONPs have a mechanical effect on biofilms in presence of an external magnet. In this review, a detailed description of surface-engineered magnetic nanoparticles as ideal antibacterial agents is provided, accompanied by various methods of literature review.


Subject(s)
Biofilms , Nanoparticles , Anti-Bacterial Agents/pharmacology , Magnetic Iron Oxide Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL
...