Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1165, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326311

ABSTRACT

The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Mice , Humans , Proteomics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Translocation, Genetic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Kidney Neoplasms/genetics , Chromatin/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Chromosomes, Human, X/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Valosin Containing Protein/genetics
2.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37873234

ABSTRACT

The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.

3.
J Pathol ; 254(4): 474-493, 2021 07.
Article in English | MEDLINE | ID: mdl-33428234

ABSTRACT

Sarcoma comprises a group of malignancies that includes over 100 individual disease entities. Type-specific genetic events initiate each tumor, occurring within a specific cellular context or circumstance. All sarcomas share a relationship with mesenchymal tissues of origin. Conceptual models for each specific route towards sarcomagenesis have developed over the years as clinical, cellular, and increasingly molecular observations have advanced hypotheses to be tested in the forward or reverse direction in experimental systems, often genetically engineered model organisms. This review considers the history of these discoveries in the context of technologies available at the time each was made and provides a comprehensive summary of the current knowledge of sarcoma genetics, including characteristic translocations, oncogene activation and loss of tumor suppressor gene events, and their putative cells of origin. Also considered are the interrelatedness of molecular clinical observations and genetic experiments in model systems to move this field of knowledge forward, as well as their implications for diagnostic and therapeutic paradigms for sarcoma. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carcinogenesis/genetics , Sarcoma/genetics , Sarcoma/pathology , Animals , Humans
4.
J Exp Med ; 213(13): 2989-3005, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27956588

ABSTRACT

Solid tumor metastasis is a complex biology, impinged upon by a variety of dysregulated signaling pathways. PI3'-lipid signaling has been associated with metastasis and inflammation in many cancers, but the relationship between tumor cell-intrinsic PI3'-lipid signaling and inflammatory cell recruitment has remained enigmatic. Elevated PI3'-lipid signaling associates with progression of synovial sarcoma, a deadly soft tissue malignancy initiated by a t(X;18) chromosomal translocation that generates an SS18-SSX fusion oncoprotein. Here, we show in genetically engineered mouse models of locally induced expression of SS18-SSX1 or SS18-SSX2 that Pten silencing dramatically accelerated and enhanced sarcomagenesis without compromising synovial sarcoma characteristics. PTEN deficiency increased tumor angiogenesis, promoted inflammatory gene expression, and enabled highly penetrant spontaneous pulmonary metastasis. PTEN-deficient sarcomas revealed infiltrating myeloid-derived hematopoietic cells, particularly macrophages and neutrophils, recruited via PI3'-lipid-induced CSF1 expression in tumor cells. Moreover, in a large panel of human synovial sarcomas, enhanced PI3'-lipid signaling also correlated with increased inflammatory cell recruitment and CSF1R signal transduction in both macrophages and endothelial cells. Thus, both in the mouse model and in human synovial sarcomas, PI3'-lipid signaling drives CSF1 expression and associates with increased infiltration of the monocyte/macrophage lineage as well as neutrophils.


Subject(s)
Neovascularization, Pathologic/metabolism , Oncogene Proteins, Fusion/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Sarcoma, Synovial/metabolism , Signal Transduction , Animals , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Oncogene Proteins, Fusion/genetics , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Sarcoma, Synovial/genetics , Sarcoma, Synovial/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...