Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 201: 111683, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31710928

ABSTRACT

In recent years dendrimers have fascinated the investigators towards targeted drug delivery because of their versatile framework and exhibit immense potentiality in entrapping drug moieties through host-guest interactions and serve as a promising vector in biological applications. The current investigation is focused on developing pegylated citric acid cefotaxime dendrimers through the divergent method and its characterization through spectroscopic, microscopic, thermal and microscopic techniques. Among the spectroscopic techniques, 1H NMR and 13C NMR elucidated the key functional groups at various chemical shifts while ESI-MS pointed out the molecular weight of cefotaxime sodium in various generations. Similarly, FTIR, DSC, and AFM investigations detailed that the generations are devoid of incompatibilities, structural deformities and can be opted for targeted drug delivery. The drug entrapment studies and in-vitro drug release studies highlight CFTX G5 containing 92.4% entrapment efficacy and 83.8% drug release in 48 h and specifies a sustain release characteristics. In connection to the above, the in-vivo studies reveal a potent antibacterial activity against various gram-positive and gram-negative microorganisms with a decreased hemolysis and cytotoxicity effects and reflect a high margin of safety regarding pegylated CFTX dendrimers. Further, the antibacterial activities are supported through confocal microscopy that clarified the cellular uptake of dendritic molecules and their internalization.


Subject(s)
Cefotaxime/chemistry , Citric Acid/chemistry , Dendrimers/chemistry , Nanostructures/chemistry , A549 Cells , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Cefotaxime/metabolism , Cefotaxime/pharmacology , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Liberation , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Half-Life , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Nanostructures/toxicity , Polyethylene Glycols/chemistry
2.
Nanotechnology ; 28(44): 445401, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-28854156

ABSTRACT

Supercapacitors, based on fast ion transportation, are specialized to provide high power, long stability, and efficient energy storage using highly porous electrode materials. However, their low energy density excludes them from many potential applications that require both high energy density and high power density performances. Using a scalable nanoporous graphene synthesis method involving an annealing process in hydrogen, here we show supercapacitors with highly porous graphene electrodes capable of achieving not only a high power density of 41 kW kg-1 and a Coulombic efficiency of 97.5%, but also a high energy density of 148.75 Wh kg-1. A high specific gravimetric and volumetric capacitance (306.03 F g-1 and 64.27 F cm-3) are demonstrated. The devices can retain almost 100% capacitance after 7000 charging/discharging cycles at a current density of 8 A g-1. The superior performance of supercapacitors is attributed to their ideal pore size, pore uniformity, and good ion accessibility of the synthesized graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...