Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(16): e202303343, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38146778

ABSTRACT

Oligo- and polysiloxanes are usually prepared by condensation reactions in solvents without control of stereochemistry. Here we present a solventless thermal condensation of stable organosilanols. We investigated the condensation reactions of organosilanediols with different organic substituents, having in common at least one aromatic group. The condensation kinetics of the precursors observed by NMR spectroscopy revealed a strong dependence on temperature, time, and substitution pattern at the silicon atom. SEC measurements showed that chain length increases with increasing condensation temperature and time and lower steric demand of the substituents, which also influences the glass transition temperatures (Tg) of the resulting oligo- or polymers. X-ray diffraction studies of the crystalline silanediols and their condensation products revealed a structural correlation between the substituent location in the crystalline precursors and the formed macromolecules induced by the hydrogen bonding pattern. In certain cases, it is possible to carry out topotactic polymerization in the solid-state, which has its origin in the crystal structure.

2.
Chemistry ; 27(66): 16461-16476, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34545975

ABSTRACT

Organosilanols typically show a high condensation tendency and only exist as stable isolable molecules under very specific steric and electronic conditions at the silicon atom. In the present work, various novel representatives of this class of compounds were synthesized by hydrolysis of alkoxy- or chlorosilanes. Phenyl, 1-naphthyl, and 9-phenanthrenyl substituents at the silicon atom were applied to systematically study the influence of the aromatic substituents on the structure and reactivity of the compounds. Chemical shifts in 29 Si NMR spectroscopy in solution, correlated well with the expected electronic situation induced by the substitution pattern on the Si atom. 1 H NMR studies allowed the detection of strong intermolecular hydrogen bonds. Single-crystal X-ray structures of the alkoxides and the chlorosilanes are dominated by π-π interactions of the aromatic systems, which are substituted by strong hydrogen bonding interactions representing various structural motifs in the respective silanol structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...