Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 19(5)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38917828

ABSTRACT

The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.


Subject(s)
Bone Regeneration , Cell Proliferation , Extracellular Vesicles , Mesenchymal Stem Cells , Osteogenesis , Tissue Scaffolds , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Animals , Cell Line, Tumor , Signal Transduction , Cell Survival , Tissue Engineering/methods , Chitosan/chemistry , Alkaline Phosphatase/metabolism , Osseointegration , Polymers/chemistry , Porosity
2.
J Mech Behav Biomed Mater ; 152: 106449, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387118

ABSTRACT

Metal alloy microstructure plays a crucial role in corrosion associated with total hip replacement (THR). THR is a prominent strategy that uses metal implants such as cobalt-chromium-molybdenum (CoCrMo) alloys due to their advantageous biological and mechanical properties. Despite all benefits, these implants undergo corrosion and wear processes in-vivo in a synergistic manner called tribocorrosion. Also, the implant retrieval findings reported that fretting corrosion occurred in-vivo, evidenced by the damage patterns that appeared on the THR junction interfaces. There is no scientific data on the studies reporting the fretting corrosion patterns of CoCrMo microstructures in the presence of specific biological treatments to date. In the current study, Flat-on-flat fretting corrosion set-up was customized and used to study the tribocorrosion patterns of fretting corrosion to understand the role of alloy microstructure. Alloy microstructural differences were created with the implant stock metal's longitudinal and transverse cutting orientations. As a result, the transverse created the non-banded, homogenous microstructure, whereas the longitudinal cut resulted in the banded, non-homogenous microstructure on the surface of the alloy (in this manuscript, the terms homogenous and banded were used). The induced currents were monitored using a three-electrode system. Three different types of electrolytes were utilized to study the fretting corrosion patterns with both homogeneous and banded microstructures: 1. Control media 2. Spent media (the macrophage cell cultured media) 3. Challenged media (media collected after the macrophage was treated with CoCrMo particles). From the electrochemical results, in the potentiostat conditions, the banded group exhibited a higher induced current in both challenged and spent electrolyte environments than in control due to the synergistic activity of CoCrMo particles and macrophage demonstrating more corrosion loss. Additionally, both Bode and Nyquist plots reported a clear difference between the banded and homogeneous microstructure, especially with challenged electrolytes becoming more corrosion-resistant post-fretting than pre-fretting results. The banded microstructure showed a unique shape of the fretting loop, which may be due to tribochemical reactions. Therefore, from the electrochemical, mechanical, and surface analysis data results, the transverse/homogenous/non-banded alloy microstructure groups show a higher resistance to fretting-corrosion damage.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Corrosion , Alloys , Chromium , Cobalt , Molybdenum , Electrolytes
3.
Res Sq ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37886457

ABSTRACT

Fretting-corrosion is one of the failure processes in many applications, including biomedical implants. For example, the modern design of hip implants with multiple components offers better flexibility and inventory storage. However, it will trigger the fretting at the implant interfaces with a small displacement amplitude (< 5 µm) and usually in a partial slip region. Although many studies have been reported on the fretting, they have high displacement amplitude and are in the gross slip region. It is imperative to have an apparatus to overcome such limitations, specifically for hip implant applications. Therefore, this study describes the development of a fretting-corrosion apparatus with low micro-motion (≤ 5 µm) that can simultaneously monitor the corrosion process. Initial experiments with Ti6Al4V-Ti6Al4V in 0.9% saline, Ti6Al4V-Ti6Al4V in bovine calf serum (BCS), and ZrO2-Ti6Al4V in BCS were conducted to validate the system. As a result, the fretting regime of all groups remained partially slip region throughout the 3600 cycles, and the possible failure mechanisms are proposed in this manuscript.

4.
Int J Biol Macromol ; 253(Pt 4): 126681, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37666403

ABSTRACT

Breast cancer is the second highest cause of cancer-related mortality in women worldwide and in the United States, accounting for around 571,000 deaths per year. Early detection of breast cancer increases treatment results and the possibility of a cure. While existing diagnostic modalities such as mammography, ultrasound, and biopsy exist, some are prohibitively expensive, uncomfortable, time-consuming, and have limited sensitivity, necessitating the development of a cost-effective, rapid, and highly sensitive approach such as an electrochemical biosensor. Our research focuses on detecting breast cancer patients using the ECM1 biomarker, which has higher expression in synthetic urine. Our study has two primary objectives: (i) Diverse ECM1 protein concentrations are measured using electrochemical impedance spectroscopy and ELISA. Establishing a standard curve for the electrochemical biosensor by calibrating ECM-1 protein levels using electrochemical impedance spectroscopy. (ii) Validation of the effectiveness of the electrochemical biosensor. This aim entails testing the unknown concentration of ECM1 in the synthetic urine to ensure the efficiency of the biosensor to detect the biomarker in the early stages. The results show that the synthetic urine solution's ECM-1 detection range ranges from 1 pg/ml to 500 ng/ml. This shows that by detecting changes in ECM-1 protein levels in patient urine, the electrochemical biosensor can consistently diagnose breast cancer in its early stages or during increasing recurrence. Our findings highlight the electrochemical biosensor's efficacy in detecting early-stage breast cancer biomarkers (ECM-1) in patient urine. Further studies will be conducted with patient samples and develop handheld hardware for patient usage.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Biomarkers, Tumor/metabolism , Proteomics , Biosensing Techniques/methods , Electrochemical Techniques/methods , Extracellular Matrix Proteins
5.
Ann Biomed Eng ; 51(12): 2749-2761, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37530907

ABSTRACT

Titanium-based implants utilized in total joint arthroplasties could restore primary musculoskeletal function to patients suffering from osteoarthritis and other conditions. Implants are susceptible to failure stemming from aseptic loosening and infection at the joint site, eventually requiring revision surgery. We hypothesized that there might be a feedback loop by which metal degradation particles and ions released from the implant decrease cell viability and increase immune response, thereby creating biochemical conditions that increase the corrosion rate and release more metal ions. This study focused on the synergistic process through cell viability assays and electrochemical tests. From the results, inflammatory conditions from ion release resulting in cell death would further increase the corrosion rate at the metal implant site. The synergistic interaction in the implant surroundings in which infectious conditions produce Ti ions that contribute to more infection, creating a potential cycle of accelerating corrosion.


Subject(s)
Metals , Titanium , Humans , Prostheses and Implants , Ions , Corrosion
6.
Sci Rep ; 13(1): 4513, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934131

ABSTRACT

Biomimicry is becoming deep-rooted as part of bioceramics owing to its numerous functional advantages. Naturally occurring hydroxyapatite (HA) apart from primary nano structures are also characterised by various ionic substitutions. The ease of accommodating such key elements into the HA lattice is known to enhance bone healing properties of bioceramics. In this work, hydroxyapatite synthesized via biomimetic approach was substituted with individual as well as multiple cations for potential applications in bone repair. Ion substitutions of Sr, Mg and Zn was carried out on HA for the first time by using Serratia grown in a defined biomineralization medium. The individual ions of varying concentration substituted in Serratia HA (SHA) (Sr SHA, Mg SHA and Zn SHA) were analysed for crystallinity, functional groups, morphology and crystal size. All three showed decreased crystallinity, phase purity, large agglomerated aggregates and needle-shaped morphologies. Fourier transform infrared spectroscopy (FTIR) spectra indicated increased carbonate content of 5.8% resembling that of natural bone. Additionally, the reduced O-H intensities clearly portrayed disruption of HA lattice and subsequent ion-substitution. The novelty of this study lies primarily in investigating the co-substitution of a combination of 1% Sr, Zn and Mg in SHA and establishing the associated change in bone parameters. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images clearly illustrated uniform nano-sized agglomerates of average dimensions of 20-50 nm length and 8-15 nm width for Sr SHA; 10-40 nm length and 8-10 nm width for both Zn SHA and Mg SHA and 40-70 nm length and 4-10 nm width in the case of 1% Sr, Zn, Mg SHA. In both individual as well as co-substitutions, significant peak shifts were not observed possibly due to the lower concentrations. However, cell volumes increased in both cases due to presence of Sr2+ validating its dominant integration into the SHA lattice. Rich trace ion deposition was presented by energy dispersive X-ray spectroscopy (EDS) and quantified using inductively coupled plasma optical emission spectrometer (ICP-OES). In vitro cytotoxicity studies in three cell lines viz. NIH/3T3 fibroblast cells, MG-63 osteosarcoma cells and RAW 264.7 macrophages showed more than 90% cell viability proving the biocompatible nature of 1% Sr, Zn and Mg in SHA. Microbial biomineralization by Serratia produced nanocrystals of HA that mimicked "bone-like apatite" as evidenced by pure phase, carbonated groups, reduced crystallinity, nano agglomerates, variations in cell parameters, rich ion deposition and non-toxic nature. Therefore ion-substituted and co-substituted biomineralized nano SHA appears to be a suitable candidate for applications in biomedicine addressing bone injuries and aiding regeneration as a result of its characteristics close to that of the human bone.


Subject(s)
Durapatite , Nanoparticles , Humans , Durapatite/chemistry , Serratia marcescens , Biomimetics , Nanoparticles/chemistry , Ions , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
Sci Rep ; 11(1): 11205, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045605

ABSTRACT

Endophytic fungi with the ability to produce plant based secondary metabolites are a potential alternative for producing the host plant metabolite and to prevent natural plants from extinction. To isolate a high metabolite yielding endophytic strain from plants, hundreds of endophytic strains are screened and tested for product yield separately under axenic state, before shortlisting the potential endophyte, which involves huge time consumption. In this study, strategies for screening and selection of high camptothecin yielding endophytes from their natural habitat were proposed. A correlation was built between the camptothecin yield in the explants and the endophytes isolated from them. In addition, camptothecin yield was compared between the endophytes isolated from young and matured plants. Further, camptothecin producers and non-producers strains were compared for their tolerance toward camptothecin. The study indicates that high camptothecin yielding endophytes were isolated from high yielding explants and younger plants and they were more tolerant to camptothecin in comparison to non-camptothecin yielding endophytes. Thus, choosing a young and high yielding explant for endophyte isolation, and use of camptothecin as a selective agent in the growth medium, can be instrumental in screening and selection of high camptothecin yielding endophytes from nature in relatively less time.


Subject(s)
Camptothecin/metabolism , Endophytes/metabolism , Magnoliopsida/metabolism
8.
Int J Biol Macromol ; 143: 30-40, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31811851

ABSTRACT

Synthetic bone grafts are being developed to overcome the limitations of conventional treatments for bone defects. In this study, we have fabricated bioactive binary and novel ternary interpenetrating polymer network (IPN) scaffolds using a combination of natural and synthetic polymers. The binary IPN scaffolds were prepared using Konjac glucomannan (KGM) and polyvinyl alcohol (PVA). In the novel ternary IPN scaffolds, polycaprolactone (PCL) was added to PVA and KGM. SEM images showed that these scaffolds were microporous with good interconnectivity. Compression testing confirmed that both the scaffolds are mechanically strong, with the ternary scaffolds having moduli comparable to the natural bone. In vitro cytocompatibility studies performed with NIH/3T3 fibroblasts cells and MG-63 osteosarcoma cells demonstrated the non-toxic and osseointegrating nature of the scaffolds. Confocal images confirmed that the cells migrated into the interconnected pores of the scaffolds. RT-PCR analysis showed that both binary and ternary scaffolds enhanced the expression of the major bone marker genes, viz., ALP, BMP-2, COLLAGEN-1, and OSTEOCALCIN. However, the expression of these osteogenic markers was significantly enhanced in the ternary scaffolds compared to the binary scaffolds. In vivo chick chorioallantoic membrane (CAM) assay shows that these scaffolds possess excellent pro-angiogenic properties. Hence, these desirable biological properties, coupled with the suitable physicochemical properties, make these IPN scaffolds ideal for treating bone defects.


Subject(s)
Bone Regeneration , Mannans/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cell Line , Chemical Phenomena , Chemistry Techniques, Synthetic , Gene Expression , Mechanical Phenomena , Mice , Neovascularization, Physiologic , Osteogenesis/genetics , Porosity , Spectrum Analysis
9.
Chem Commun (Camb) ; 54(82): 11582-11585, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30264065

ABSTRACT

A novel method of preparing chitosan gels using in situ generated negatively-charged colloidal salts of a variety of metal ions is described. Their potential as scaffolds for tissue-engineering and as recoverable catalysts in aza-Michael addition is demonstrated here. Given their wide range of properties, they have broad scope for applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...