Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Microbiol Spectr ; 11(4): e0083123, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37347185

ABSTRACT

Long-term low-dose macrolide therapy is now widely used in the treatment of chronic respiratory diseases for its immune-modulating effects, although the antimicrobial properties of macrolides can also have collateral impacts on the gut microbiome. We investigated whether such treatment altered intestinal commensal microbiology and whether any such changes affected systemic immune and metabolic regulation. In healthy adults exposed to 4 weeks of low-dose erythromycin or azithromycin, as used clinically, we observed consistent shifts in gut microbiome composition, with a reduction in microbial capacity related to carbohydrate metabolism and short-chain fatty acid biosynthesis. These changes were accompanied by alterations in systemic biomarkers relating to immune (interleukin 5 [IL-5], IL-10, monocyte chemoattractant protein 1 [MCP-1]) and metabolic (serotonin [5-HT], C-peptide) homeostasis. Transplantation of erythromycin-exposed murine microbiota into germ-free mice demonstrated that changes in metabolic homeostasis and gastrointestinal motility, but not systemic immune regulation, resulted from changes in intestinal microbiology caused by macrolide treatment. Our findings highlight the potential for long-term low-dose macrolide therapy to influence host physiology via alteration of the gut microbiome. IMPORTANCE Long-term macrolide therapy is widely used in chronic respiratory diseases although its antibacterial activity can also affect the gut microbiota, a key regulator of host physiology. Macrolide-associated studies on the gut microbiota have been limited to short antibiotic courses and have not examined its consequences for host immune and metabolic regulation. This study revealed that long-term macrolides depleted keystone bacteria and impacted host regulation, mediated directly by macrolide activity or indirectly by alterations to the gut microbiota. Understanding these macrolide-associated mechanisms will contribute to identifying the risk of long-term exposure and highlights the importance of targeted therapy for maintenance of the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Respiratory Tract Diseases , Animals , Mice , Macrolides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Erythromycin/pharmacology , Respiratory Tract Diseases/drug therapy
2.
Aliment Pharmacol Ther ; 58(4): 404-416, 2023 08.
Article in English | MEDLINE | ID: mdl-37313992

ABSTRACT

BACKGROUND: The low FODMAP diet (LFD) leads to clinical response in 50%-80% of patients with irritable bowel syndrome (IBS). It is unclear why only some patients respond. AIMS: To determine if differences in baseline faecal microbiota or faecal and urine metabolite profiles may separate clinical responders to the diet from non-responders allowing predictive algorithms to be proposed. METHODS: We recruited adults fulfilling Rome III criteria for IBS to a blinded randomised controlled trial. Patients were randomised to sham diet with a placebo supplement (control) or LFD supplemented with either placebo (LFD) or 1.8 g/d B-galactooligosaccharide (LFD/B-GOS), for 4 weeks. Clinical response was defined as adequate symptom relief at 4 weeks after the intervention (global symptom question). Differences between responders and non-responders in faecal microbiota (FISH, 16S rRNA sequencing) and faecal (gas-liquid chromatography, gas-chromatography mass-spectrometry) and urine (1 H NMR) metabolites were analysed. RESULTS: At 4 weeks, clinical response differed across the 3groups with adequate symptom relief of 30% (7/23) in controls, 50% (11/22) in the LFD group and 67% (16/24) in the LFD/B-GOS group (p = 0.048). In the control and the LFD/B-GOS groups, microbiota and metabolites did not separate responders from non-responders. In the LFD group, higher baseline faecal propionate (sensitivity 91%, specificity 89%) and cyclohexanecarboxylic acid esters (sensitivity 80%, specificity 78%), and urine metabolite profile (Q2 0.296 vs. randomised -0.175) predicted clinical response. CONCLUSIONS: Baseline faecal and urine metabolites may predict response to the LFD.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Humans , Irritable Bowel Syndrome/diagnosis , RNA, Ribosomal, 16S , FODMAP Diet , Fermentation , Diet , Diet, Carbohydrate-Restricted/methods , Disaccharides
3.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37111311

ABSTRACT

KRASG12C is one of the most common mutations detected in non-small cell lung cancer (NSCLC) patients, and it is a marker of poor prognosis. The first FDA-approved KRASG12C inhibitors, sotorasib and adagrasib, have been an enormous breakthrough for patients with KRASG12C mutant NSCLC; however, resistance to therapy is emerging. The transcriptional coactivators YAP1/TAZ and the family of transcription factors TEAD1-4 are the downstream effectors of the Hippo pathway and regulate essential cellular processes such as cell proliferation and cell survival. YAP1/TAZ-TEAD activity has further been implicated as a mechanism of resistance to targeted therapies. Here, we investigate the effect of combining TEAD inhibitors with KRASG12C inhibitors in KRASG12C mutant NSCLC tumor models. We show that TEAD inhibitors, while being inactive as single agents in KRASG12C-driven NSCLC cells, enhance KRASG12C inhibitor-mediated anti-tumor efficacy in vitro and in vivo. Mechanistically, the dual inhibition of KRASG12C and TEAD results in the downregulation of MYC and E2F signatures and in the alteration of the G2/M checkpoint, converging in an increase in G1 and a decrease in G2/M cell cycle phases. Our data suggest that the co-inhibition of KRASG12C and TEAD leads to a specific dual cell cycle arrest in KRASG12C NSCLC cells.

4.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: mdl-34255744

ABSTRACT

The syndrome of spontaneous preterm birth (sPTB) presents a challenge to mechanistic understanding, effective risk stratification, and clinical management. Individual associations between sPTB, self-reported ethnic ancestry, vaginal microbiota, metabolome, and innate immune response are known but not fully understood, and knowledge has yet to impact clinical practice. Here, we used multi-data type integration and composite statistical models to gain insight into sPTB risk by exploring the cervicovaginal environment of an ethnically heterogenous pregnant population (n = 346 women; n = 60 sPTB < 37 weeks' gestation, including n = 27 sPTB < 34 weeks). Analysis of cervicovaginal samples (10-15+6 weeks) identified potentially novel interactions between risk of sPTB and microbiota, metabolite, and maternal host defense molecules. Statistical modeling identified a composite of metabolites (leucine, tyrosine, aspartate, lactate, betaine, acetate, and Ca2+) associated with risk of sPTB < 37 weeks (AUC 0.752). A combination of glucose, aspartate, Ca2+, Lactobacillus crispatus, and L. acidophilus relative abundance identified risk of early sPTB < 34 weeks (AUC 0.758), improved by stratification by ethnicity (AUC 0.835). Increased relative abundance of L. acidophilus appeared protective against sPTB < 34 weeks. By using cervicovaginal fluid samples, we demonstrate the potential of multi-data type integration for developing composite models toward understanding the contribution of the vaginal environment to risk of sPTB.


Subject(s)
Cervix Uteri/microbiology , Microbiota/immunology , Premature Birth/epidemiology , Vagina/microbiology , Adult , Aspartic Acid/metabolism , Calcium/metabolism , Case-Control Studies , Female , Glucose/metabolism , Humans , Infant, Newborn , Lactobacillus acidophilus/immunology , Lactobacillus acidophilus/metabolism , Lactobacillus crispatus/immunology , Lactobacillus crispatus/metabolism , Longitudinal Studies , Maternal Age , Metabolomics , Pregnancy , Premature Birth/immunology , Premature Birth/microbiology , Prospective Studies , Risk Assessment/methods , Risk Assessment/statistics & numerical data , United Kingdom/epidemiology
5.
Am J Gastroenterol ; 115(6): 906-915, 2020 06.
Article in English | MEDLINE | ID: mdl-32433273

ABSTRACT

INTRODUCTION: The low FODMAP diet (LFD) reduces symptoms and bifidobacteria in irritable bowel syndrome (IBS). ß-galactooligosaccharides (B-GOS) may reduce the symptoms and increase bifidobacteria in IBS. We investigated whether B-GOS supplementation alongside the LFD improves IBS symptoms while preventing the decline in bifidobacteria. METHODS: We performed a randomized, placebo-controlled, 3-arm trial of 69 Rome III adult patients with IBS from secondary care in the United Kingdom. Patients were randomized to a sham diet with placebo supplement (control) or LFD supplemented with either placebo (LFD) or 1.4 g/d B-GOS (LFD/B-GOS) for 4 weeks. Gastrointestinal symptoms, fecal microbiota (fluorescent in situ hybridization and 16S rRNA sequencing), fecal short-chain fatty acids (gas-liquid chromatography) and pH (probe), and urine metabolites (H NMR) were analyzed. RESULTS: At 4 weeks, adequate symptom relief was higher in the LFD/B-GOS group (16/24, 67%) than in the control group (7/23, 30%) (odds ratio 4.6, 95% confidence interval: 1.3-15.6; P = 0.015); Bifidobacterium concentrations (log10 cells/g dry weight) were not different between LFD and LFD/B-GOS but were lower in the LFD/B-GOS (9.49 [0.73]) than in the control (9.77 [0.41], P = 0.018). A proportion of Actinobacteria was lower in LFD (1.9%, P = 0.003) and LFD/B-GOS (1.8%, P < 0.001) groups than in the control group (4.2%). Fecal butyrate was lower in the LFD (387.3, P = 0.028) and LFD/B-GOS (346.0, P = 0.007) groups than in the control group (609.2). DISCUSSION: The LFD combined with B-GOS prebiotic produced a greater symptom response than the sham diet plus placebo, but addition of 1.4 g/d B-GOS did not prevent the reduction of bifidobacteria. The LFD reduces fecal Actinobacteria and butyrate thus strict long-term use should not be advised.


Subject(s)
Bifidobacterium/genetics , Diet, Carbohydrate-Restricted/methods , Galactose/therapeutic use , Gastrointestinal Microbiome/genetics , Irritable Bowel Syndrome/therapy , Oligosaccharides/therapeutic use , Prebiotics , Adult , Combined Modality Therapy , Diet Therapy/methods , Feces/chemistry , Female , Fermentation , Humans , In Situ Hybridization, Fluorescence , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/physiopathology , Male , Middle Aged , RNA, Ribosomal, 16S , Treatment Outcome , Urine/chemistry , Young Adult
6.
Arterioscler Thromb Vasc Biol ; 39(10): 2049-2066, 2019 10.
Article in English | MEDLINE | ID: mdl-31340667

ABSTRACT

OBJECTIVE: Perivascular adipose tissue (PVAT) plays a vital role in maintaining vascular homeostasis. However, most studies ascribed the function of PVAT in vascular remodeling to adipokines secreted by the perivascular adipocytes. Whether mesenchymal stem cells exist in PVAT and play a role in vascular regeneration remain unknown. Approach and Results: Single-cell RNA-sequencing allowed direct visualization of the heterogeneous PVAT-derived mesenchymal stem cells (PV-ADSCs) at a high resolution and revealed 2 distinct subpopulations, among which one featured signaling pathways crucial for smooth muscle differentiation. Pseudotime analysis of cultured PV-ADSCs unraveled their smooth muscle differentiation trajectory. Transplantation of cultured PV-ADSCs in mouse vein graft model suggested the contribution of PV-ADSCs to vascular remodeling through smooth muscle differentiation. Mechanistically, treatment with TGF-ß1 (transforming growth factor ß1) and transfection of microRNA (miR)-378a-3p mimics induced a similar metabolic reprogramming of PV-ADSCs, including upregulated mitochondrial potential and altered lipid levels, such as increased cholesterol and promoted smooth muscle differentiation. CONCLUSIONS: Single-cell RNA-sequencing allows direct visualization of PV-ADSC heterogeneity at a single-cell level and uncovers 2 subpopulations with distinct signature genes and signaling pathways. The function of PVAT in vascular regeneration is partly attributed to PV-ADSCs and their differentiation towards smooth muscle lineage. Mechanistic study presents miR-378a-3p which is a potent regulator of metabolic reprogramming as a potential therapeutic target for vascular regeneration.


Subject(s)
Adipose Tissue/metabolism , MicroRNAs/genetics , Muscle, Smooth, Vascular/metabolism , Transforming Growth Factor beta1/genetics , Vascular Remodeling/genetics , Adipocytes/metabolism , Animals , Cell Differentiation/genetics , Cell Survival , Cells, Cultured , Disease Models, Animal , Male , Mesenchymal Stem Cells/metabolism , Metabolomics/methods , Mice , Mice, Inbred C57BL , Oxygen Consumption , RNA, Small Interfering/genetics , Random Allocation , Sequence Analysis, RNA , Signal Transduction/genetics , Vascular Diseases/genetics , Vascular Diseases/metabolism
7.
Gut Microbes ; 10(3): 367-381, 2019.
Article in English | MEDLINE | ID: mdl-30359203

ABSTRACT

Chronic disruption of the intestinal microbiota in adult cystic fibrosis (CF) patients is associated with local and systemic inflammation, and has been linked to the risk of serious comorbidities. Supplementation with high amylose maize starch (HAMS) might provide clinical benefit by promoting commensal bacteria and the biosynthesis of immunomodulatory metabolites. However, whether the disrupted CF gut microbiota has the capacity to utilise these substrates is not known. We combined metagenomic sequencing, in vitro fermentation, amplicon sequencing, and metabolomics to define the characteristics of the faecal microbiota in adult CF patients and assess HAMS fermentation capacity. Compared to healthy controls, the faecal metagenome of adult CF patients had reduced bacterial diversity and prevalence of commensal fermentative clades. In vitro fermentation models seeded with CF faecal slurries exhibited reduced acetate levels compared to healthy control reactions, but comparable levels of butyrate and propionate. While the commensal genus Faecalibacterium was strongly associated with short chain fatty acid (SCFA) production by healthy microbiota, it was displaced in this role by Clostridium sensu stricto 1 in the microbiota of CF patients. A subset of CF reactions exhibited enterococcal overgrowth, resulting in lactate accumulation and reduced SCFA biosynthesis. The addition of healthy microbiota to CF faecal slurries failed to displace predominant CF taxa, or substantially influence metabolite biosynthesis. Despite significant microbiota disruption, the adult CF gut microbiota retains the capacity to exploit HAMS. Our findings highlight the potential for taxa associated with the altered CF gut microbiotato mediate prebiotic effects in microbial systems subject to ongoing perturbation, irrespective of the depletion of common commensal clades.


Subject(s)
Bacteria/metabolism , Cystic Fibrosis/microbiology , Fermentation , Prebiotics , Starch/chemistry , Starch/metabolism , Adult , Amylose/analysis , Amylose/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Fatty Acids, Volatile/metabolism , Feces/chemistry , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Humans , Male , Metabolome , Metagenome , Middle Aged , Prebiotics/analysis , RNA, Ribosomal, 16S/genetics , Young Adult
8.
mSphere ; 3(4)2018 07 18.
Article in English | MEDLINE | ID: mdl-30021876

ABSTRACT

The mycobacterial cell wall affords natural resistance to antibiotics. Antimicrobial peptides (AMPs) modify the surface properties of mycobacteria and can act synergistically with antibiotics from differing classes. Here, we investigate the response of Mycobacterium smegmatis to the presence of rifampin or capreomycin, either alone or in combination with two synthetic, cationic, α-helical AMPs that are distinguished by the presence (D-LAK120-HP13) or absence (D-LAK120-A) of a kink-inducing proline. Using a combination of high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) metabolomics, diphenylhexatriene (DPH) fluorescence anisotropy measurements, and laurdan emission spectroscopy, we show that M. smegmatis responds to challenge with rifampin or capreomycin by substantially altering its metabolism and, in particular, by remodeling the cell envelope. Overall, the changes are consistent with a reduction of trehalose dimycolate and an increase of trehalose monomycolate and are associated with increased rigidity of the mycolic acid layer observed following challenge by capreomycin but not rifampin. Challenge with D-LAK120-A or D-LAK120-HP13 induced no or modest changes, respectively, in mycomembrane metabolites and did not induce a significant increase in the rigidity of the mycolic acid layer. Furthermore, the response to rifampin or capreomycin was significantly reduced when these were combined with D-LAK120-HP13 and D-LAK120-A, respectively, suggesting a possible mechanism for the synergy of these combinations. The remodeling of the mycomembrane in M. smegmatis is therefore identified as an important countermeasure deployed against rifampin or capreomycin, but this can be mitigated and the efficacy of rifampin or capreomycin potentiated by combining the drug with AMPs.IMPORTANCE We have used a combined NMR metabolomics/biophysical approach to better understand differences in the mechanisms of two closely related antimicrobial peptides, as well as the response of the model organism Mycobacterium smegmatis to challenge with first- or second-line antibiotics used against mycobacterial pathogens. We show that, in addition to membrane damage, the triggering of oxidative stress may be an important part of the mechanism of action of one AMP. The metabolic shift that accompanied rifampin and, particularly, capreomycin challenge was associated with modest and more dramatic changes, respectively, in the mycomembrane, providing a rationale for how the response to one antibiotic may affect bacterial penetration and, hence, the action of another. This study presents the first insights into how antimicrobial peptides may operate synergistically with existing antibiotics whose efficacy is waning or sensitize MDR mycobacteria and/or latent mycobacterial infections to them, prolonging the useful life of these drugs.


Subject(s)
Anti-Infective Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , Capreomycin/metabolism , Drug Synergism , Mycobacterium smegmatis/drug effects , Mycolic Acids/metabolism , Rifampin/metabolism , Cell Wall/metabolism , Fluorescence Polarization , Magnetic Resonance Spectroscopy , Metabolomics , Mycobacterium smegmatis/metabolism , Photoelectron Spectroscopy
9.
mSphere ; 2(1)2017.
Article in English | MEDLINE | ID: mdl-28194448

ABSTRACT

The intestinal microbiome plays an essential role in regulating many aspects of host physiology, and its disruption through antibiotic exposure has been implicated in the development of a range of serious pathologies. The complex metabolic relationships that exist between members of the intestinal microbiota and the potential redundancy in functional pathways mean that an integrative analysis of changes in both structure and function are needed to understand the impact of antibiotic exposure. We used a combination of next-generation sequencing and nuclear magnetic resonance (NMR) metabolomics to characterize the effects of two clinically important antibiotic treatments, ciprofloxacin and vancomycin-imipenem, on the intestinal microbiomes of female C57BL/6 mice. This assessment was performed longitudinally and encompassed both antibiotic challenge and subsequent microbiome reestablishment. Both antibiotic treatments significantly altered the microbiota and metabolite compositions of fecal pellets during challenge and recovery. Spearman's correlation analysis of microbiota and NMR data revealed that, while some metabolites could be correlated with individual operational taxonomic units (OTUs), frequently multiple OTUs were associated with a significant change in a given metabolite. Furthermore, one metabolite, arginine, can be associated with increases/decreases in different sets of OTUs under differing conditions. Taken together, these findings indicate that reliance on shifts in one data set alone will generate an incomplete picture of the functional effect of antibiotic intervention. A full mechanistic understanding will require knowledge of the baseline microbiota composition, combined with both a comparison and an integration of microbiota, metabolomics, and phenotypic data. IMPORTANCE Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly understood. Much research in this area has focused on changes in microbiota composition, despite the interdependency and overlapping functions of many members of the microbial community. These relationships make prediction of the functional impact of microbiota-level changes difficult, while analyses based on the metabolome alone provide relatively little insight into the taxon-level changes that underpin changes in metabolite levels. Here, we used combined microbiota and metabolome profiling to characterize changes associated with clinically important antibiotic combinations with distinct effects on the gut. Correlation analysis of changes in the metabolome and microbiota indicate that a combined approach will be essential for a mechanistic understanding of the functional impact of distinct antibiotic classes.

10.
Stem Cell Reports ; 4(4): 699-711, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25818813

ABSTRACT

Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. However, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and computer-generated 3D fractals. Comparing predictions of these models with immunohistochemical analysis of tissue sections for candidate stem cell markers, we defined distinct areas where stem cells reside in the mammary lobule. An increased representation of stem cells was found in smaller, less developed lobules compared to larger, more mature lobules, with marked differences in the gland of nulliparous versus parous women and that of BRCA1/2 mutation carriers versus non-carriers.


Subject(s)
Cell Differentiation , Mammary Glands, Human , Organogenesis , Stem Cells/cytology , Stem Cells/metabolism , Biomarkers/metabolism , Epithelium/metabolism , Female , Humans , Models, Biological , Tissue Culture Techniques
11.
J Biol Chem ; 287(41): 34120-33, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22869378

ABSTRACT

We used a combination of fluorescence, circular dichroism (CD), and NMR spectroscopies in conjunction with size exclusion chromatography to help rationalize the relative antibacterial, antiplasmodial, and cytotoxic activities of a series of proline-free and proline-containing model antimicrobial peptides (AMPs) in terms of their structural properties. When compared with proline-free analogs, proline-containing peptides had greater activity against Gram-negative bacteria, two mammalian cancer cell lines, and intraerythrocytic Plasmodium falciparum, which they were capable of killing without causing hemolysis. In contrast, incorporation of proline did not have a consistent effect on peptide activity against Mycobacterium tuberculosis. In membrane-mimicking environments, structures with high α-helix content were adopted by both proline-free and proline-containing peptides. In solution, AMPs generally adopted disordered structures unless their sequences comprised more hydrophobic amino acids or until coordinating phosphate ions were added. Proline-containing peptides resisted ordering induced by either method. The roles of the angle subtended by positively charged amino acids and the positioning of the proline residues were also investigated. Careful positioning of proline residues in AMP sequences is required to enable the peptide to resist ordering and maintain optimal antibacterial activity, whereas varying the angle subtended by positively charged amino acids can attenuate hemolytic potential albeit with a modest reduction in potency. Maintaining conformational flexibility improves AMP potency and selectivity toward bacterial, plasmodial, and cancerous cells while enabling the targeting of intracellular pathogens.


Subject(s)
Anti-Bacterial Agents , Antimalarials , Antimicrobial Cationic Peptides , Antineoplastic Agents , Mycobacterium tuberculosis/growth & development , Plasmodium falciparum/growth & development , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Transformed , Cell Line, Tumor , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...