Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
FEBS Open Bio ; 14(4): 695-720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38425293

ABSTRACT

The peptide mimetic, NC114, is a promising anticancer compound that specifically kills colorectal cancer cells without affecting normal colon epithelial cells. In our previous study, we observed that NC114 inhibited the Wnt/ß-catenin pathway, with significant downregulation of both Ser 675-phosphorylated ß-catenin and its target genes, cyclin D1 and survivin. However, the molecular mechanism responsible for its cytotoxic effect has not yet been fully characterized. In the present study, we demonstrated that NC114 prevented cell cycle progression from S to G2/M phase by downregulating cell cycle-related gene expression, and also induced growth arrest in SW480 and HCT-116 colorectal cancer cells. A novel covariation network analysis combined with transcriptome analysis revealed a series of signaling cascades affected by NC114 treatment, and identified protein kinase C-δ (PKCδ) and forkhead box protein M1 (FOXM1) as important regulatory factors for NC114-induced growth arrest. NC114 treatment inhibits the activation of PKCδ and its kinase activity, which suppresses MEK/ERK signaling. Attenuated MEK/ERK signaling then results in a reduction in FOXM1 phosphorylation and subsequent nuclear translocation of FOXM1 and ß-catenin. Consequently, formation of a T-cell factor-4 (TCF4)/ß-catenin transcription complex in the nucleus is inhibited and transcription of its target genes, such as cell cycle-related genes, is downregulated. The efficacy of NC114 on tumor growth was confirmed in a xenograft model. Collectively, elucidation of the mechanism by which NC114 induces growth arrest in colorectal cancer cells should provide a novel therapeutic strategy for colorectal cancer treatment.


Subject(s)
Colorectal Neoplasms , Forkhead Box Protein M1 , Humans , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , beta Catenin/metabolism , Wnt Signaling Pathway/genetics , Colorectal Neoplasms/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
3.
Stem Cell Reports ; 18(3): 688-705, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36764297

ABSTRACT

In addition to increasing ß-amyloid plaque deposition and tau tangle formation, inhibition of neurogenesis has recently been observed in Alzheimer's disease (AD). This study generated a cellular model that recapitulated neurogenesis defects observed in patients with AD, using induced pluripotent stem cell lines derived from sporadic and familial AD (AD iPSCs). AD iPSCs exhibited impaired neuron and oligodendrocyte generation when expression of several senescence markers was induced. Compound screening using these cellular models identified three drugs able to restore neurogenesis, and extensive morphological quantification revealed cell-line- and drug-type-dependent neuronal generation. We also found involvement of elevated Sma- and Mad-related protein 1/5/9 (SMAD1/5/9) phosphorylation and greater Runt-related transcription factor 2 (RUNX2) expression in neurogenesis defects in AD. Moreover, BMP4 was elevated in AD iPSC medium during neural differentiation and cerebrospinal fluid of patients with AD, suggesting a BMP4-SMAD1/5/9-RUNX2 signaling pathway contribution to neurogenesis defects in AD under senescence-related conditions.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Bone Morphogenetic Protein 4/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Induced Pluripotent Stem Cells/metabolism , Neurogenesis/physiology , Neurons/metabolism , Smad Proteins
4.
FEBS J ; 290(12): 3221-3242, 2023 06.
Article in English | MEDLINE | ID: mdl-36705569

ABSTRACT

The M2 isoform of pyruvate kinase (PKM2) is abundantly expressed in various cancer cells and associated with tumorigenesis, tumour proliferation and tumour progression. However, the role of PKM2 in these oncological processes is not fully understood. In the present study, we depleted PKM2 expression using RNA interference (RNAi), which induced apoptotic cell death and was accompanied by the downregulation of GM130, giantin, and p115 in HeLa and ME-180 cervical cancer cells. The decreased expression of these proteins caused structural and functional disturbances in the Golgi apparatus, which manifested as the dispersion of the Golgi apparatus and delayed anterograde trafficking from the ER to the Golgi. The transcription factor, TFE3, which functions in the Golgi stress response, was responsible for the expression of GM130, giantin, and p115 that maintained the integrity of the organelle under normal growth conditions. In PKM2-knockdown cells, the translation of TFE3 was markedly reduced. Knockdown of TFE3 by RNAi resulted in the downregulation of GM130, giantin, and p115, dispersion of the Golgi apparatus, and apoptotic cell death, similar to those observed following PKM2 knockdown. Conversely, the exogenous expression of TFE3 in PKM2 knockdown cells partially mitigated the aforementioned effects. We also demonstrated that PKM2 bound to the 5' UTR on TFE3 mRNA and promoted translation. This study is the first to identify a new function for PKM2, which activates the basal Golgi stress response to maintain the integrity of the Golgi apparatus through the translation of TFE3 and promote cancer cell survival.


Subject(s)
Membrane Proteins , Uterine Cervical Neoplasms , Humans , Female , Membrane Proteins/metabolism , Uterine Cervical Neoplasms/genetics , HeLa Cells , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
5.
Histochem Cell Biol ; 159(4): 313-327, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36504003

ABSTRACT

Adipocyte differentiation is a sequential process involving increased expression of peroxisome proliferator-activated receptor gamma (PPARγ), adipocyte-specific gene expression, and accumulation of lipid droplets in the cytoplasm. Expression of the transcription factors involved is usually detected using canonical biochemical or biomolecular procedures such as Western blotting or qPCR of pooled cell lysates. While this provides a useful average index for adipogenesis for some populations, the precise stage of adipogenesis cannot be distinguished at the single-cell level, because the heterogenous nature of differentiation among cells limits the utility of averaged data. We have created a classifier to sort cells, and used it to determine the stage of adipocyte differentiation at the single-cell level. We used a machine learning method with microscopic images of cell stained for PPARγ and lipid droplets as input data. Our results show that the classifier can successfully determine the precise stage of differentiation. Stage classification and subsequent model fitting using the sequential reaction model revealed the action of pioglitazone and rosiglitazone to be promotion of transition from the stage of increased PPARγ expression to the next stage. This indicates that these drugs are PPARγ agonists, and that our classifier and model can accurately estimate drug action points and would be suitable for evaluating the stage/state of individual cells during differentiation or disease progression. The incorporation of both biochemical and morphological information derived from immunofluorescence image of cells and so overcomes limitations of current models.


Subject(s)
Adipogenesis , PPAR gamma , Cell Differentiation , Adipocytes , Lipid Droplets , Machine Learning
6.
Front Cell Dev Biol ; 10: 1027043, 2022.
Article in English | MEDLINE | ID: mdl-36601537

ABSTRACT

"Trim-Away" technology enables rapid degradation of endogenous proteins without prior modification of protein-coding genes or mRNAs through delivery of antibodies that target proteins of interest. Although this approach can be readily applied to almost any cytosolic protein, strategies for cytosolic antibody delivery have been limited to microinjection or electroporation, which require skill-dependent operation or specialized equipment. Thus, the development of antibody delivery methods that are convenient, scalable, and preferably do not require detachment of adherent cells is required to extend the versatility of the Trim-Away method. Here, we developed a cell resealing technique optimized for Trim-Away degradation, which uses the pore-forming toxin streptolysin O (SLO) to permeabilize the cell membrane and delivered the antibodies of interest into HEK293T, HeLa, and HK-2 cell lines. We demonstrated the ability of Trim-Away protein degradation using IKKα and mTOR as targets, and we showed the availability of the developed system in antibody screening for the Trim-Away method. Furthermore, we effectively coupled Trim-Away with cyclic immunofluorescence and microscopic image-based analysis, which enables single-cell multiplexed imaging analysis. Taking advantage of this new analysis strategy, we were able to compensate for low signal-to-noise due to cell-to-cell variation, which occurs in the Trim-Away method because of the heterogenous contents of the introduced antibody, target protein, and TRIM21 in individual cells. Therefore, the reported cell resealing technique coupled with microscopic image analysis enables Trim-Away users to elucidate target protein function and the effects of target protein degradation on various cellular functions in a more quantitative and precise manner.

7.
iScience ; 24(7): 102724, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34337357

ABSTRACT

To infer a "live" protein network in single cells, we developed a novel Protein Localization and Modification-based Covariation Network (PLOM-CON) analysis method using a large set of quantitative data on the abundance (quantity), post-translational modification state (quality), and localization/morphological information of target proteins from microscope immunostained images. The generated network exhibited synchronized time-dependent behaviors of the target proteins to visualize how a live protein network develops or changes in cells under specific experimental conditions. As a proof of concept for PLOM-CON analysis, we applied this method to elucidate the role of actin scaffolds, in which actin fibers and signaling molecules accumulate and form membrane-associated protein condensates, in insulin signaling in rat hepatoma cells. We found that the actin scaffold in cells may function as a platform for glycogenesis and protein synthesis upon insulin stimulation.

8.
Sci Rep ; 11(1): 2900, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536479

ABSTRACT

MicroRNAs (miRNAs) are cargo carried by extracellular vesicles (EVs) and are associated with cell-cell interactions. The response to the cellular environment, such as disease states, genetic/metabolic changes, or differences in cell type, highly regulates cargo sorting to EVs. However, morphological features during EV formation and secretion involving miRNA loading are unknown. This study developed a new method of EV loading using cell resealing and reconstituted the elementary miRNA-loading processes. Morphology, secretory response, and cellular uptake ability of EVs obtained from intact and resealed HeLa cells were comparable. Exogenously added soluble factors were introduced into multivesicular endosomes (MVEs) and their subsequent secretion to the extracellular region occurred in resealed HeLa cells. In addition, miRNA transport to MVEs and miRNA encapsulation to EVs followed a distinct pathway regulated by RNA-binding proteins, such as Argonaute and Y-box binding protein 1, depending on miRNA types. Our cell-resealing system can analyze disease-specific EVs derived from disease model cells, where pathological cytosol is introduced into cells. Thus, EV formation in resealed cells can be used not only to create a reconstitution system to give mechanistic insight into EV encapsulation but also for applications such as loading various molecules into EVs and identifying disease-specific EV markers.


Subject(s)
Cytological Techniques/methods , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Endocytosis , HeLa Cells , Humans , Membrane Fusion
9.
Int J Mol Sci ; 21(17)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872628

ABSTRACT

Cyanobacteriochromes (CBCRs), which are known as linear tetrapyrrole-binding photoreceptors, to date can only be detected from cyanobacteria. They can perceive light only in a small unit, which is categorized into various lineages in correlation with their spectral and structural characteristics. Recently, we have succeeded in identifying specific molecules, which can incorporate mammalian intrinsic biliverdin (BV), from the expanded red/green (XRG) CBCR lineage and in converting BV-rejective molecules into BV-acceptable ones with the elucidation of the structural basis. Among the BV-acceptable molecules, AM1_1870g3_BV4 shows a spectral red-shift in comparison with other molecules, while NpF2164g5_BV4 does not show photoconversion but stably shows a near-infrared (NIR) fluorescence. In this study, we found that AM1_1870g3_BV4 had a specific Tyr residue near the d-ring of the chromophore, while others had a highly conserved Leu residue. The replacement of this Tyr residue with Leu in AM1_1870g3_BV4 resulted in a blue-shift of absorption peak. In contrast, reverse replacement in NpF2164g5_BV4 resulted in a red-shift of absorption and fluorescence peaks, which applies to fluorescence bio-imaging in mammalian cells. Notably, the same Tyr/Leu-dependent color-tuning is also observed for the CBCRs belonging to the other lineage, which indicates common molecular mechanisms.


Subject(s)
Bacterial Proteins/metabolism , Biliverdine/metabolism , Cyanobacteria/metabolism , Photoreceptors, Microbial/metabolism , Amino Acid Sequence , Amino Acid Substitution , Biliverdine/chemistry , Color , HeLa Cells , Humans , Light , Sequence Homology
10.
Biochim Biophys Acta Gen Subj ; 1864(2): 129329, 2020 02.
Article in English | MEDLINE | ID: mdl-30914205

ABSTRACT

BACKGROUND: Cell-based assays are essential for analyzing molecular functions and spatiotemporal information. The cell resealing technique, in which pore-forming toxins are used to permeabilize cell membranes, enables the delivery of various membrane-impermeable molecules inside cells. SCOPE OF REVIEW: We review the basics of the resealed cell system, including optimized protocols, assessment of cellular damage, and recovery following permeabilization of the membrane. Additionally, we introduce the streptolysin O (SLO)-type and listeriolysin O (LLO)-type resealing techniques. In SLO, the formation of larger pores (~30 nm) enables the passage of a wider range of molecules. Then, we discuss the advantages and applications of the semi-intact cell system, in which ongoing permeabilization is selected to maintain and analyze a specific cellular environment. MAJOR CONCLUSIONS: As confirmed by the effective use of quantitative image analysis, the SLO-type resealing system is successful for establishing and phenotyping diabetic model cells by introducing cytosol from diabetic mice. The LLO-type resealing technique enables the delivery of mid-sized molecules with high efficiency and low damage. As each technique has specific advantages, understanding the characteristics of LLO and SLO is necessary for choosing the appropriate technique. GENERAL SIGNIFICANCE: SLO-type resealing is optimal for creating disease model cells and drug screening, especially lifestyle-related diseases. LLO-type resealing is expected to be suitable for screening mid-sized biological drugs. Semi-intact cells can contribute to elucidating various cellular phenomena that have remained intractable due to their complexity.


Subject(s)
Bacterial Toxins/chemistry , Cell Membrane Permeability/drug effects , Cytological Techniques , Heat-Shock Proteins/chemistry , Hemolysin Proteins/chemistry , Streptolysins/chemistry , Animals , Bacterial Proteins/chemistry , Biological Products , Cell Membrane/metabolism , Cytosol/metabolism , Diabetes Mellitus, Experimental , Fluorescein/chemistry , Gene Editing , Genotype , HEK293 Cells , Humans , Membranes/metabolism , Mice , Phenotype
11.
PLoS One ; 14(10): e0223300, 2019.
Article in English | MEDLINE | ID: mdl-31574128

ABSTRACT

Tight junctions (TJs) are cellular junctions within the mammalian epithelial cell sheet that function as a physical barrier to molecular transport within the intercellular space. Dysregulation of TJs leads to various diseases. Tricellular TJs (tTJs), specialized structural variants of TJs, are formed by multiple transmembrane proteins (e.g., lipolysis-stimulated lipoprotein receptor [LSR] and tricellulin) within tricellular contacts in the mammalian epithelial cell sheet. However, the mechanism for recruiting LSR and tricellulin to tTJs is largely unknown. Previous studies have identified that tyrphostin 9, the dual inhibitor of Pyk2 (a nonreceptor tyrosine kinase) and receptor tyrosine kinase platelet-derived growth factor receptor (PDGFR), suppresses LSR and tricellulin recruitment to tTJs in EpH4 (a mouse mammary epithelial cell line) cells. In this study, we investigated the effect of Pyk2 inhibition on LSR and tricellulin localization to tTJs. Pyk2 inactivation by its specific inhibitor or repression by RNAi inhibited the localization of LSR and downstream tricellulin to tTJs without changing their expression level in EpH4 cells. Pyk2-dependent changes in subcellular LSR and tricellulin localization were independent of c-Jun N-terminal kinase (JNK) activation and expression. Additionally, Pyk2-dependent LSR phosphorylation at Tyr-237 was required for LSR and tricellulin localization to tTJs and decreased epithelial barrier function. Our findings indicated a novel mechanism by which Pyk2 regulates tTJ assembly and epithelial barrier function in the mammalian epithelial cell sheet.


Subject(s)
Focal Adhesion Kinase 2/metabolism , MARVEL Domain Containing 2 Protein/metabolism , Receptors, Lipoprotein/metabolism , Tight Junctions/metabolism , Epithelium , Focal Adhesion Kinase 2/genetics , Gene Knockdown Techniques , Humans , RNA, Small Interfering/genetics , Transcription Factors
12.
Results Probl Cell Differ ; 67: 233-250, 2019.
Article in English | MEDLINE | ID: mdl-31435798

ABSTRACT

Morphology of Golgi apparatus changes frequently and diversely depending on various cellular conditions and these changes correlate with the balance between membrane inflow and outflow at the Golgi via vesicular transports. In a previous study, we introduced a semi-intact cell system suitable for the reconstitution of morphological changes that organelles undergo as well as the vesicular transport between them. Semi-intact cells are cells that have undergone plasma membrane permeabilization by the cholesterol-dependent pore-forming cytolysin, streptolysin O (SLO). Permeabilization enables the introduction of various molecules into the cells, as well as the substitution of the original cytosol with an exogenously made cytosol prepared from cells in various stages of cell cycle, differentiation, and disease progression. Coupled with a green fluorescent protein(GFP)-visualization technique, this cell-based system enables the analysis of the molecular mechanisms underlying biological processes that are highly dependent on the integrity of the intracellular architecture. In this chapter, we present a variety of reconstitution assays concerning biological reactions pertaining to the Golgi apparatus.


Subject(s)
Cell Membrane Permeability , Golgi Apparatus/metabolism , Cell Membrane Permeability/drug effects , Cytosol/chemistry , Cytosol/drug effects , Cytosol/metabolism , Golgi Apparatus/drug effects
13.
Sci Rep ; 9(1): 4548, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872611

ABSTRACT

ATP-binding cassette A1 (ABCA1) plays a key role in generating high-density lipoprotein (HDL) and preventing atherosclerosis. ABCA1 exports cholesterol and phospholipid to apolipoprotein A-I (apoA-I) in serum to generate HDL. We found that streptolysin O (SLO), a cholesterol-dependent pore-forming toxin, barely formed pores in ABCA1-expressing cells, even in the absence of apoA-I. Neither cholesterol content in cell membranes nor the amount of SLO bound to cells was affected by ABCA1. On the other hand, binding of the D4 domain of perfringolysin O (PFO) to ABCA1-expressing cells increased, suggesting that the amount of cholesterol in the outer leaflet of the plasma membrane (PM) increased and that the cholesterol dependences of these two toxins differ. Addition of cholesterol to the PM by the MßCD-cholesterol complex dramatically restored SLO pore formation in ABCA1-expressing cells. Therefore, exogenous expression of ABCA1 causes reduction in the cholesterol level in the inner leaflet, thereby suppressing SLO pore formation.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein A-I/metabolism , Bacterial Toxins/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Hemolysin Proteins/metabolism , Lipoproteins, HDL/metabolism , Streptolysins/metabolism , Bacterial Proteins/metabolism , HEK293 Cells , Humans
14.
Biochim Biophys Acta Mol Cell Res ; 1866(5): 793-805, 2019 05.
Article in English | MEDLINE | ID: mdl-30742930

ABSTRACT

Phosphatidylinositol-3-phosphate (PI3P) is a lipid that accumulates in the early endosomal membrane, and acts as a scaffold to recruit proteins that contain a PI3P-binding domain, such as the FYVE domain. In this study, we examined the effect of PI3P depletion on the insulin response in rat hepatoma-derived H4IIEC3 cells. We found that insulin treatment induced the transient formation of an actin domain structure, a mesh-like tangled network of actin filaments where phosphorylated Akt, endosomal proteins, and PI3P accumulated. Actin domain formation was repressed by the depletion of PI3P by SAR405, an inhibitor of the class III PI3 kinase, Vps34, by the inhibition of PI3P function by the competitive binding of an excess amount of GST-fused 2xFYVE protein to intracellular PI3P, and by the use of diabetic model cells, in which PI3P was depleted. SAR405 did not affect the phosphorylation level of Akt, and the transcriptional regulation of gluconeogenic and cholesterol synthetic genes after insulin treatment. Interestingly, insulin-induced DNA synthesis was specifically inhibited by SAR405, cytochalasin B, and also in diabetic model cells. These results suggest that PI3P is required for the formation of actin domains, which affected a signaling pathway downstream of Akt associated with DNA synthesis in H4IIEC3 cells.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , DNA, Neoplasm/biosynthesis , Insulin/pharmacology , Liver Neoplasms/metabolism , Phosphatidylinositol Phosphates/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class III Phosphatidylinositol 3-Kinases/genetics , Cytochalasin B/pharmacology , DNA, Neoplasm/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Phosphatidylinositol Phosphates/genetics , Protein Domains , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyridines/pharmacology , Pyrimidinones/pharmacology , Rats
15.
Sci Rep ; 8(1): 10776, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-30018364

ABSTRACT

Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), is classified into two subgroups, Stx1 and Stx2. Clinical data clearly indicate that Stx2 is associated with more severe toxicity than Stx1, but the molecular mechanism underlying this difference is not fully understood. Here, we found that after being incorporated into target cells, Stx2, can be transported by recycling endosomes, as well as via the regular retrograde transport pathway. However, transport via recycling endosome did not occur with Stx1. We also found that Stx2 is actively released from cells in a receptor-recognizing B-subunit dependent manner. Part of the released Stx2 is associated with microvesicles, including exosome markers (referred to as exo-Stx2), whose origin is in the multivesicular bodies that formed from late/recycling endosomes. Finally, intravenous administration of exo-Stx2 to mice causes more lethality and tissue damage, especially severe renal dysfunction and tubular epithelial cell damage, compared to a free form of Stx2. Thus, the formation of exo-Stx2 might contribute to the severity of Stx2 in vivo, suggesting new therapeutic strategies against EHEC infections.


Subject(s)
Exosomes/metabolism , Shiga Toxin 2/toxicity , Virulence Factors/toxicity , Animals , Biological Transport , Endosomes/metabolism , Kidney/drug effects , Mice , Shiga Toxin 2/metabolism , Virulence Factors/metabolism
16.
Sci Rep ; 8(1): 1946, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386585

ABSTRACT

Cell-based assays have become increasingly important in the preclinical studies for biopharmaceutical products such as specialty peptides, which are of interest owing to their high substrate specificity. However, many of the latter are membrane impermeable and must be physically introduced into cells to evaluate their intracellular activities. We previously developed a "cell-resealing technique" that exploited the temperature-dependent pore-forming activity of the streptococcal toxin, streptolysin O (SLO), that enabled us to introduce various molecules into cells for evaluation of their intracellular activities. In this study, we report a new cell resealing method, the listeriolysin O (LLO)-mediated resealing method, to deliver mid-sized, membrane-impermeable biopharmaceuticals into cells. We found that LLO-type resealing required no exogenous cytosol to repair the injured cell membrane and allowed the specific entry of mid-sized molecules into cells. We use this method to introduce either a membrane-impermeable, small compound (8-OH-cAMP) or specialty peptide (Akt-in), and demonstrated PKA activation or Akt inhibition, respectively. Collectively, the LLO-type resealing method is a user-friendly and reproducible intracellular delivery system for mid-sized membrane-impermeable molecules into cells and for evaluating their intracellular activities.


Subject(s)
Bacterial Toxins/metabolism , Cell Membrane Permeability , Heat-Shock Proteins/metabolism , Hemolysin Proteins/metabolism , Intracellular Space/metabolism , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Adenosine Triphosphate/pharmacology , Bacterial Proteins/metabolism , Biopharmaceutics , Cell Membrane/metabolism , Cell Proliferation , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytosol/metabolism , Dextrans/chemistry , Endocytosis , Enzyme Activation , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , L-Lactate Dehydrogenase/metabolism , Molecular Weight , Peptides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Streptolysins/metabolism , Stress, Physiological , Transferrin/metabolism
17.
Phys Chem Chem Phys ; 20(5): 2982-2985, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29022027

ABSTRACT

In order to understand intracellular biological events, information on the structure, dynamics and interaction of proteins and nucleic acids in living cells is of crucial importance. In-cell NMR is a promising method to obtain this information. Although NMR signals of proteins in human cells have been reported, those of nucleic acids were reported only in Xenopus laevis oocytes, i.e., not in human cells. Here, DNA and RNA were introduced into human cells by means of pore formation by bacterial toxin streptolysin O and subsequent resealing. Then, NMR signals of DNA and RNA were successfully observed for the first time in living human cells. The observed signals directly suggested the formation of DNA and RNA hairpin structures in living human cells.


Subject(s)
DNA/chemistry , Nuclear Magnetic Resonance, Biomolecular , RNA/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Flow Cytometry , HeLa Cells , Humans , Microscopy, Confocal , Streptolysins/chemistry , Streptolysins/metabolism
18.
Sci Rep ; 7(1): 15167, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123170

ABSTRACT

Cell-based assays are growing in importance for screening drugs and investigating their mechanisms of action. Most of the assays use so-called "normal" cell strain because it is difficult to produce cell lines in which the disease conditions are reproduced. In this study, we used a cell-resealing technique, which reversibly permeabilizes the plasma membrane, to develop diabetic (Db) model hepatocytes into which cytosol from diabetic mouse liver had been introduced. Db model hepatocytes showed several disease-specific phenotypes, namely disturbance of insulin-induced repression of gluconeogenic gene expression and glucose secretion. Quantitative image analysis and principal component analysis revealed that the ratio of phosphorylated Akt (pAkt) to Akt was the best index to describe the difference between wild-type and Db model hepatocytes. By performing image-based drug screening, we found pioglitazone, a PPARγ agonist, increased the pAkt/Akt ratio, which in turn ameliorated the insulin-induced transcriptional repression of the gluconeogenic gene phosphoenolpyruvate carboxykinase 1. The disease-specific model cells coupled with image-based quantitative analysis should be useful for drug development, enabling the reconstitution of disease conditions at the cellular level and the discovery of disease-specific markers.


Subject(s)
Cytological Techniques/methods , Diabetes Mellitus/drug therapy , Drug Evaluation, Preclinical/methods , Hepatocytes/drug effects , Hypoglycemic Agents/isolation & purification , Models, Biological , Optical Imaging/methods , Animals , Gene Expression Regulation/drug effects , Gluconeogenesis/drug effects , Hypoglycemic Agents/pharmacology , Mice , Phosphoproteins/analysis , Proto-Oncogene Proteins c-akt/analysis , Signal Transduction/drug effects
19.
Cell Signal ; 38: 212-222, 2017 10.
Article in English | MEDLINE | ID: mdl-28743549

ABSTRACT

Apoptotic death of pancreatic ß cells is a major cause of type 2 diabetes mellitus (T2D) progression. Two isoforms of pyruvate kinase, PKM1 and PKM2, have been reported to participate in cell death in several cell types; however, little is known about their causal pathways in pancreatic ß-cell death. We examined whether the suppression of PKM1 or PKM2 affects endoplasmic reticulum (ER) stress-induced apoptosis in a pancreatic ß-cell line, MIN6, and Beta-TC-6 and found that knockdown of PKM1, but not of PKM2, leads to the induction of ER stress-induced apoptosis in these cells. We also investigated the mechanism by which PKM1 inhibits ER stress-induced apoptosis. We confirmed that PKM1 interacts with A-Raf, an upstream regulator of the MEK/ERK pathway, and that this interaction contributes to MEK1 phosphorylation by A-Raf. PKM1 knockdown suppresses the phosphorylation of MEK, ERK, and caspase-9 (Thr125), which is phosphorylated by the MEK/ERK pathway, thereby inhibiting the cleavage and activation of caspase-9. Thus, PKM1 knockdown activates the caspase-9/caspase-3 pathway under ER stress conditions and leads to apoptosis.


Subject(s)
Apoptosis , Carrier Proteins/metabolism , Endoplasmic Reticulum Stress , Insulinoma/enzymology , Insulinoma/pathology , MAP Kinase Signaling System/drug effects , Membrane Proteins/metabolism , Proto-Oncogene Proteins A-raf/metabolism , Thyroid Hormones/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Butadienes/pharmacology , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Knockdown Techniques , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Nitriles/pharmacology , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Serine-Threonine Kinases/metabolism , Pyruvic Acid/metabolism , eIF-2 Kinase/metabolism , Thyroid Hormone-Binding Proteins
20.
Cell Death Dis ; 8(3): e2718, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358375

ABSTRACT

Cancer cells are under chronic endoplasmic reticulum (ER) stress due to hypoxia, low levels of nutrients, and a high metabolic demand for proliferation. To survive, they constitutively activate the unfolded protein response (UPR). The inositol-requiring protein 1 (IRE1) and protein kinase RNA-like ER kinase (PERK) signaling branches of the UPR have been shown to have cytoprotective roles in cancer cells. UPR-induced autophagy is another prosurvival strategy of cancer cells, possibly to remove misfolded proteins and supply nutrients. However, the mechanisms by which cancer cells exploit the UPR and autophagy machinery to promote survival and the molecules that are essential for these processes remain to be elucidated. Recently, a multipass membrane protein, Yip1A, was shown to function in the activation of IRE1 and in UPR-induced autophagy. In the present study, we explored the possible role of Yip1A in activation of the UPR by cancer cells for their survival, and found that depletion of Yip1A by RNA interference (RNAi) induced apoptotic cell death in HeLa and CaSki cervical cancer cells. Intriguingly, Yip1A was found to activate the IRE1 and PERK pathways of the UPR constitutively in HeLa and CaSki cells. Yip1A mediated the phosphorylation of IRE1 and also engaged in the transcription of PERK. The activation of these signaling pathways upregulated the expression of anti-apoptotic proteins and autophagy-related proteins. These events might enhance resistance to apoptosis and promote cytoprotective autophagy in HeLa and CaSki cells. The present study is the first to uncover a key prosurvival modulator, Yip1A, which coordinates IRE1 signaling with PERK signaling to support the survival of HeLa and CaSki cervical cancer cells.


Subject(s)
Endoribonucleases/metabolism , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Unfolded Protein Response , Uterine Cervical Neoplasms/metabolism , Vesicular Transport Proteins/metabolism , eIF-2 Kinase/metabolism , Cell Survival/genetics , Endoribonucleases/genetics , Female , HeLa Cells , Humans , Neoplasm Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Vesicular Transport Proteins/genetics , eIF-2 Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...