Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Lipid Res ; 63(11): 100284, 2022 11.
Article in English | MEDLINE | ID: mdl-36152881

ABSTRACT

The intestine plays a crucial role in regulating whole-body lipid metabolism through its unique function of absorbing dietary fat. In the small intestine, absorptive epithelial cells emulsify hydrophobic dietary triglycerides (TAGs) prior to secreting them into mesenteric lymphatic vessels as chylomicrons. Except for short- and medium-chain fatty acids, which are directly absorbed from the intestinal lumen into portal vasculature, the only way for an animal to absorb dietary TAG is through the chylomicron/mesenteric lymphatic pathway. Isolating intestinal lipoproteins, including chylomicrons, is extremely difficult in vivo because of the dilution of postprandial lymph in the peripheral blood. In addition, once postprandial lymph enters the circulation, chylomicron TAGs are rapidly hydrolyzed. To enhance isolation of large quantities of pure postprandial chylomicrons, we have modified the Tso group's highly reproducible gold-standard double-cannulation technique in rats to enable single-day surgery and lymph collection in mice. Our technique has a significantly higher survival rate than the traditional 2-day surgical model and allows for the collection of greater than 400 µl of chylous lymph with high postprandial TAG concentrations. Using this approach, we show that after an intraduodenal lipid bolus, the mesenteric lymph contains naïve CD4+ T-cell populations that can be quantified by flow cytometry. In conclusion, this experimental approach represents a quantitative tool for determining dietary lipid absorption, intestinal lipoprotein dynamics, and mesenteric immunity. Our model may also be a powerful tool for studies of antigens, the microbiome, pharmacokinetics, and dietary compound absorption.


Subject(s)
Chylomicrons , Lymphatic Vessels , Animals , Mice , Rats , Chylomicrons/metabolism , Dietary Fats/metabolism , Intestinal Absorption/physiology , Lipoproteins/metabolism , Lymph/metabolism , Lymphatic Vessels/metabolism , Lymphocytes/metabolism , Triglycerides/metabolism
2.
PLoS One ; 16(9): e0251895, 2021.
Article in English | MEDLINE | ID: mdl-34520472

ABSTRACT

Obesity and diabetes have strong heritable components, yet the genetic contributions to these diseases remain largely unexplained. In humans, a missense variant in Creb3 regulatory factor (CREBRF) [rs373863828 (p.Arg457Gln); CREBRFR457Q] is strongly associated with increased odds of obesity but decreased odds of diabetes. Although virtually nothing is known about CREBRF's mechanism of action, emerging evidence implicates it in the adaptive transcriptional response to nutritional stress downstream of TORC1. The objectives of this study were to generate a murine model with knockin of the orthologous variant in mice (CREBRFR458Q) and to test the hypothesis that this CREBRF variant promotes obesity and protects against diabetes by regulating energy and glucose homeostasis downstream of TORC1. To test this hypothesis, we performed extensive phenotypic analysis of CREBRFR458Q knockin mice at baseline and in response to acute (fasting/refeeding), chronic (low- and high-fat diet feeding), and extreme (prolonged fasting) nutritional stress as well as with pharmacological TORC1 inhibition, and aging to 52 weeks. The results demonstrate that the murine CREBRFR458Q model of the human CREBRFR457Q variant does not influence energy/glucose homeostasis in response to these interventions, with the exception of possible greater loss of fat relative to lean mass with age. Alternative preclinical models and/or studies in humans will be required to decipher the mechanisms linking this variant to human health and disease.


Subject(s)
DNA-Binding Proteins/genetics , Diet/adverse effects , Glucose/metabolism , Obesity/genetics , Polymorphism, Single Nucleotide , Animals , Body Mass Index , Diet/classification , Disease Models, Animal , Energy Metabolism , Female , Gene Knock-In Techniques , Genetic Predisposition to Disease , Male , Mice , Mutation, Missense , Obesity/metabolism
3.
J Ethnopharmacol ; 278: 114296, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34090907

ABSTRACT

ETHNO-PHARMACOLOGICAL RELEVANCE: Withania somnifera (L.) Dunal, commonly known as Ashwagandha, belongs to the family Solanaceae. In Ayurveda, Ashwagandha has been defined as one of the most important herb and is considered to be the best adaptogen. It is also an excellent rejuvenator, a general health tonic and cure for various disorders such as cerebrovascular, insomnia, asthma, ulcers, etc. Steroidal lactones (Withanolides: Withanolide A, Withaferin A, Withanolide D, Withanone, etc) isolated from this plant, possess promising medicinal properties such as anti-inflammatory, immune-stimulatory etc. Standardized root extract of the plant NMITLI-118R (NM) was prepared at CSIR-CIMAP, and was investigated for various biological activities at CSIR-CDRI. Among the notable medicinal properties, NM exhibited excellent neuroprotective activity in the middle cerebral artery occlusion (MCAO) rat model. AIM OF THE STUDY: Endothelial dysfunction is the primary event in the cerebrovascular or cardiovascular disorders, present study was thus undertaken to evaluate vasoprotective potential of NM and its biomarker compound Withanolide A (WA) using rat aortic rings and EA.hy926 endothelial cells. MATERIAL AND METHODS: Transverse aortic rings of 10 weeks old Wistar rats were used to evaluate effect of NM and WA on the vasoreactivity. While, mechanism of NM and WA mediated vasorelaxant was investigated in Ea.hy926 cell line by measuring NO generation, nitrite content, Serine 1177 phosphorylation of eNOS, reduced/oxidized biopterin levels and expression of endothelial nitric oxide synthase (eNOS) mRNA and protein. RESULTS: Fingerprinting of NM using HPLC identified presence of WA in the extract. NM as well as WA exerted moderate vasorelaxant effect in the endothelium intact rat aortic rings which was lesser than acetylcholine (ACh). NM and WA augmented ACh induced relaxation in the rat aortic rings. NM and WA dependent vasorelaxation was blocked by N-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4] oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ), indicating role of NO/cGMP. Further Ea.hy926 cells treated with NM and WA showed accumulation of nitrite content, enhanced NO levels, eNOS expression and eNOS phosphorylation (Serine 1177). CONCLUSION: Altogether NM and WA dependent improvement in the NO availability seems to be mediated by the enhanced eNOS phosphorylation. WA, seems to be one of the active constituent of NM, and presence of other vasoactive substances cannot be ruled out. The data obtained imply that the vasorelaxant property of NM is beneficial for its neuroprotective potential.


Subject(s)
Aorta/drug effects , Nitric Oxide/metabolism , Plant Extracts/pharmacology , Vasodilator Agents/pharmacology , Withania/chemistry , Withanolides/pharmacology , Animals , Biomarkers , Cell Line , Cell Proliferation , Endothelial Cells/drug effects , Male , Plant Extracts/chemistry , Plant Roots/chemistry , Rats , Rats, Wistar , Vasoconstriction/drug effects , Vasodilator Agents/chemistry , Withanolides/chemistry
4.
Eur J Pharmacol ; 855: 90-97, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31063772

ABSTRACT

Recent study from this lab indicated enhanced susceptibility of iNOS KO mice for diet induced obesity (DIO) and systemic insulin resistance (IR) as compared to C57BL/6 (WT) mice. The present study investigates aortic vasoreactivity in high fat diet (HFD) induced insulin resistant iNOS KO mice. WT and iNOS KO mice were fed with 45% HFD/10% LFD for ten weeks. Systemic IR was assessed via measurement of circulating lipids, glucose, and insulin; while phenylephrine (PE)/acetylcholine (ACh) induced responses were monitored in the isolated aortic rings. To understand the mechanism, qPCR or Western blotting experiments were performed in aorta and Ea.hy926 cells. After 10 weeks of HFD feeding, significant increase in the body weight/fat mass, augmented circulating lipids, glucose, insulin and inflammatory cytokines along with impaired acetylcholine induced aortic vasorelaxation and enhanced iNOS expression was observed in the aortic tissue of WT mice. In the aminoguanidine (AG, 20 mg/kg for 4 weeks) treated WT mice and also in iNOS KO mice, acetylcholine induced vasorelaxation was significantly preserved. Further, acetylcholine mediated vasorelaxation correlated with increased eNOS phosphorylation at Ser1177 residue in the iNOS KO mice and same was also observed in the iNOS silenced Ea.hy926 cells. Moreover, treatment of Ea.hy926 cells with palmitic acid or TNFα also caused a significant decrease in eNOS activity, which was reversed in iNOS silenced Ea.hy926 cells suggesting the role of iNOS in the reduction of eNOS activity. The study thus implies a critical role of iNOS in vascular diseases associated with dyslipidemia/IR.


Subject(s)
Aorta/physiopathology , Dyslipidemias/genetics , Dyslipidemias/physiopathology , Insulin Resistance/genetics , Nitric Oxide Synthase Type II/deficiency , Nitric Oxide Synthase Type II/genetics , Animals , Aorta/pathology , Cytokines/metabolism , Diet, High-Fat/adverse effects , Dyslipidemias/metabolism , Dyslipidemias/pathology , Endothelium, Vascular/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
Free Radic Res ; 52(5): 568-582, 2018 May.
Article in English | MEDLINE | ID: mdl-29544378

ABSTRACT

Oxidative stress due to enhanced production or reduced scavenging of reactive oxygen species (ROS) has been associated with diet (dyslipidemia) induced obesity and insulin resistance (IR). The present study was undertaken to assess the role of p47phox in IR using wild type (WT) and p47phox-/- mice, fed with different diets (HFD, LFD or Chow). Augmented body weight, glucose intolerance and reduced insulin sensitivity were observed in p47phox-/- mice fed with 45% HFD and 10% LFD. Further, body fat and circulating lipids were increased significantly with 5 weeks LFD feeding in p47phox-/- mice, while parameters of energy homeostasis were reduced as compared with WT mice. LFD fed knockout (KO) mice showed an enhanced hepatic glycogenolysis, and reduced insulin signalling in liver and adipose tissue, while skeletal muscle tissue remained unaffected. A significant increase in hepatic lipids, adiposity, as well as expression of genes regulating lipid synthesis, breakdown and efflux were observed in LFD fed p47phox-/- mice after 5 weeks. On the other hand, mice lacking p47phox demonstrated altered glucose tolerance and tissue insulin sensitivity after 5 weeks chow feeding, while changes in body weight, respiratory exchange ratio (RER) and heat production are non-significant. Our data demonstrate that lack of p47phox is sufficient to induce IR through altered glucose and lipid utilization by the liver and adipose tissue.


Subject(s)
Adipose Tissue/metabolism , Dyslipidemias/metabolism , Glucose/metabolism , Insulin Resistance , Liver/metabolism , NADPH Oxidases/genetics , Obesity/metabolism , Adipose Tissue/pathology , Animals , Cytokines/genetics , Cytokines/metabolism , Diet, Fat-Restricted , Diet, High-Fat , Dyslipidemias/etiology , Dyslipidemias/genetics , Dyslipidemias/pathology , Gene Expression Regulation , Glycogenolysis/genetics , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Lipid Metabolism/genetics , Liver/pathology , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , NADPH Oxidases/deficiency , Obesity/etiology , Obesity/genetics , Obesity/pathology , Oxidative Stress , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
6.
J Ethnopharmacol ; 213: 81-91, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29129602

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xylocarpus moluccensis (Lamk.) M. Roem of family Meliaceae has triterpenoids rich fruits. Triterpenoids have been known to possess cardioprotection and anti-atherosclerotic activities (Han and Bakovic, 2015; Wu et al., 2009). Standardized fraction of these fruits exhibited anti-dyslipidemic (Srivastava et al., 2015), anti-inflammatory (Ravangpai et al., 2011) and CNS depressant activity (Sarker et al., 2007). However, there is no report in the literature on its cardiovascular effects. AIM OF THE STUDY: The present study was undertaken to assess vasoprotective, anti-atherosclerotic and further examine the anti-dyslipidemic effect of the standardized fraction of Xylocarpus moluccensis (F018) fruits in the mechanical injury and high fat diet (HFD) induced dyslipidemic/ atherosclerosis models. MATERIALS AND METHODS: Guinea pigs were fed 0.08% cholesterol + 15% fat diet for 3 weeks, while ApoE KO mice were fed high fat diet for 18 weeks to induce dyslipidemia and atherosclerosis. A combination of balloon injury and high fat diet (1% cholesterol, 6% peanut oil) for 5 weeks was used to accelerate atherosclerosis in NZW rabbits. F018 was administered once daily by oral route in guinea pigs (10, 25 or 50mg/kg/day for 3 weeks), ApoE KO mice (50mg/kg/day for 6 weeks) and in NZW rabbit (25mg/kg/day for 5 weeks) to monitor its effect on dyslipidemia, vasoreactivity and plaque composition by using standard methodologies. RESULTS: F018 treatment in guinea pigs (25 and 50mg/kg/day), ApoE mice (50mg/kg/day) and rabbits (25mg/kg/day) significantly reduced plasma lipids and improved ACh induced vasorelaxation. Anti-dyslipidemic effect of F018 seems to be due to the modulation of enterohepatic genes involved in the cholesterol absorption and excretion. Moreover, significant improvement in the acetylcholine (ACh) induced vasorelaxation was accompanied with reduced inflammatory burden and enhanced activation of eNOS in ApoE mice aortic tissue. Similarly inflammatory cytokines, immunolabeling of macrophage marker (CD68) and MMP-9 were reduced along with augmentation in vascular smooth muscle cells and collagen type I and III in the mechanically injured iliac artery segment in the rabbits. CONCLUSIONS: Altogether, F018 preserved vasoreactivity, reduced atherosclerotic plaque progression and enhanced plaque stability by reducing lipids, inflammatory cytokines, improving endothelial function and collagen content.


Subject(s)
Atherosclerosis/drug therapy , Dyslipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Meliaceae , Plant Extracts/therapeutic use , Animals , Aorta/drug effects , Aorta/physiology , Apolipoproteins E/genetics , Diet, High-Fat , Endothelium, Vascular/drug effects , Fruit , Guinea Pigs , Hypolipidemic Agents/pharmacology , Male , Mice , Mice, Knockout , Plant Extracts/pharmacology , Plaque, Atherosclerotic/drug therapy , Rabbits , Vasodilation/drug effects
8.
J Cardiovasc Pharmacol ; 69(5): 314-325, 2017 May.
Article in English | MEDLINE | ID: mdl-28207427

ABSTRACT

OBJECTIVE: Although atherosclerosis is described in New Zealand White rabbit's iliac artery, yet details of time-dependent atherosclerosis progression are not well known. Further, a well characterized accelerated model of atherosclerosis is also required for the screening of candidate drugs to target specific steps of atherosclerosis development. The present study extensively characterizes the time-dependent plaque composition and functional responses of the atherosclerosis in rabbit iliac artery and its modification by simvastatin. METHODS: Atherosclerosis was induced with a combination of balloon injury and atherogenic diet (AD) (1% cholesterol, 6% peanut oil) in rabbit's iliac artery. Atherosclerosis progression was evaluated on days 8, 10, 15, 21, 35, and 56 after AD feeding. The plaque characterization was done using histology, real-time reverse transcription-polymerase chain reaction, and vasoreactivity experiments. The standard anti-hyperlipidemic drug, simvastatin (5 mg·kg·d), was used to investigate its effect on atherosclerotic changes. RESULTS: Plasma lipids were elevated in a progressive manner after AD feeding from days 8 to 56. Similarly, arterial lipids, Monocyte Chemoattractant Protein-1 (MCP-1) level along with infiltration of macrophages in the lesion area were also increased from day 15 onward. This resulted in a significant increase in the plaque area and intimal-medial thickness ratio in contrast to normal animals. Inflammatory milieu was observed with a significant increase in expression of pro-inflammatory regulators like MCP-1, Tumor Necrosis Factor-α (TNF-α) and Vascular Cell Adhesion Molecule-1 (VCAM-1), whereas anti-inflammatory cytokine interleukin 10 decreased as disease progressed. Endothelial dysfunction was also observed, specifically Acetylcholine (ACh)-induced vasorelaxation was reduced from day 8 onward, whereas the phenylephrine-induced vasoconstriction response was progressively reduced from day 15 in the iliac artery. Ground substances including proteoglycans, α-actin, and collagen content along with metalloproteinase-9 and Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibitors were significantly augmented at later time points, day 21 onward. Simvastatin treatment for 35 days, at a dose having no significant effect on plasma lipid levels, significantly reduced atherosclerotic progression as evident by reduced macrophage content, inflammatory burden, and extracellular matrix component like proteoglycans and metalloproteinase-9. CONCLUSIONS: The authors observed that AD feeding with balloon injury in the rabbit iliac artery accelerated the progression of atherosclerosis and exhibited predominant features of type III human lesion within 8 weeks (56 days). Simvastatin treatment for 35 days exhibited anti-atherosclerotic efficacy without significantly lowering the circulating lipids. The current study thus provides an insight into the time-dependent atherosclerotic progression in rabbit iliac artery and highlights its utility for anti-atherosclerotic evaluation of the candidate drugs.


Subject(s)
Atherosclerosis/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Iliac Artery/drug effects , Plaque, Atherosclerotic , Simvastatin/pharmacology , Angioplasty, Balloon , Animals , Atherosclerosis/blood , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Biomarkers/blood , Diet, High-Fat , Disease Models, Animal , Disease Progression , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Extracellular Matrix/metabolism , Iliac Artery/metabolism , Iliac Artery/pathology , Iliac Artery/physiopathology , Inflammation Mediators/blood , Lipids/blood , Macrophages/drug effects , Macrophages/metabolism , Male , Rabbits , Time Factors , Vascular Remodeling/drug effects , Vasoconstriction/drug effects , Vasodilation/drug effects
9.
Sci Rep ; 7: 41009, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106120

ABSTRACT

On the basis of diet induced obesity and KO mice models, nitric oxide is implied to play an important role in the initiation of dyslipidemia induced insulin resistance. However, outcomes using iNOS KO mice have so far remained inconclusive. The present study aimed to assess IR in iNOS KO mice after 5 weeks of LFD feeding by monitoring body composition, energy homeostasis, insulin sensitivity/signaling, nitrite content and gene expressions changes in the tissues. We found that body weight and fat content in KO mice were significantly higher while the respiratory exchange ratio (RER), volume of carbon dioxide (VCO2), and heat production were lower as compared to WT mice. Furthermore, altered systemic glucose tolerance, tissue insulin signaling, hepatic gluconeogenesis, augmented hepatic lipids, adiposity, as well as gene expression regulating lipid synthesis, catabolism and efflux were evident in iNOS KO mice. Significant reduction in eNOS and nNOS gene expression, hepatic and adipose tissue nitrite content, circulatory nitrite was also observed. Oxygen consumption rate of mitochondrial respiration has remained unaltered in KO mice as measured using extracellular flux analyzer. Our findings establish a link between the NO status with systemic and tissue specific IR in iNOS KO mice at 5 weeks.


Subject(s)
Adipose Tissue/physiopathology , Glucose/metabolism , Homeostasis , Insulin Resistance , Lipid Metabolism , Liver/physiopathology , Nitric Oxide Synthase Type II/deficiency , Animals , Body Fat Distribution , Body Weight , Diet/methods , Mice, Knockout , Oxygen Consumption , Respiration , Thermogenesis
10.
PLoS One ; 8(10): e77037, 2013.
Article in English | MEDLINE | ID: mdl-24146955

ABSTRACT

Effect of long term cholesterol diet withdrawal on accelerated atherosclerosis in iliac artery of New Zealand White (NZW) rabbits has not been explored so far. Atherosclerosis was thus induced in rabbits by a combination of balloon injury and atherogenic diet (AD) (1% cholesterol and 6% peanut oil) feeding for 8 weeks (baseline) followed by chow diet (CD) feeding for 4, 8, 16, 32, 50 and 64 weeks. The plaque characterization was done using histology, real time RT-PCR and vasoreactivity studies. Significant elevation in plasma lipids with AD feeding was normalized following 16 weeks of CD feeding. However, baseline comparison showed advanced plaque features even after 8 weeks of CD period with significant elevation in intima/media thickness ratio and plaque area later showing reduction at 50 and 64 weeks CD periods. Lesion lipid accumulation and CD68 positivity was maintained till 16 weeks of CD feeding which significantly reduced from 32 to 64 weeks CD periods. Baseline comparison showed significant increase in ground substance, MMP-9 and significant decrease in α-actin and collagen content at 8 weeks CD period indicating features of unstable plaque. These features regressed up to 64 weeks of CD. Partial restoration of functional vasoconstriction and vasorelaxation was seen after 64 weeks of CD feeding. mRNA expression of MCP-1, VCAM-1, collagen type I and III, MMP-9, TIMP-1, IFN-γ, TNF-α, IL-10 and eNOS supported the above findings. The study thus reveals insights into initial plaque instability and subsequent regression on AD withdrawal in this model. These results are suggestive of an appropriate window for drug intervention for plaque stability/regression and restenosis as well as improves understanding of plaque regression phenomenon in this model.


Subject(s)
Atherosclerosis/etiology , Atherosclerosis/pathology , Cholesterol, Dietary , Diet, Atherogenic , Iliac Artery/pathology , Plaque, Atherosclerotic/pathology , Actins/metabolism , Animals , Atherosclerosis/physiopathology , Cell Adhesion Molecules/metabolism , Cholesterol, Dietary/administration & dosage , Collagen/metabolism , Cytokines/metabolism , Disease Progression , Foam Cells/pathology , Iliac Artery/physiopathology , Inflammation Mediators/metabolism , Lipids/blood , Male , Matrix Metalloproteinase 9/metabolism , Muscle, Smooth/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...